機(jī)械振動(dòng)的超聲波檢測(cè)技術(shù)研究
本文選題:聲場(chǎng) 切入點(diǎn):振動(dòng)檢測(cè) 出處:《華東交通大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:非接觸式振動(dòng)檢測(cè)方法是一類重要的機(jī)械振動(dòng)檢測(cè)方法,其在振動(dòng)檢測(cè)領(lǐng)域中起到無可替代的重要的作用。在非接觸式振動(dòng)檢測(cè)方法中,傳感器與被測(cè)物體相互隔離,能夠在不干擾被測(cè)對(duì)象的情況下實(shí)現(xiàn)振動(dòng)檢測(cè),尤其可用于對(duì)表面粗糙、細(xì)微、質(zhì)輕及柔性結(jié)構(gòu)的振動(dòng)檢測(cè)。在常見的非接觸式振動(dòng)檢測(cè)方法中,基于超聲波的機(jī)械振動(dòng)檢測(cè)方法即超聲波測(cè)振法有其自身的獨(dú)特優(yōu)勢(shì),具有測(cè)量精度高、測(cè)量電路簡(jiǎn)單、成本低、通用性強(qiáng)等特點(diǎn),能夠運(yùn)用于煙霧、不透明氣體、強(qiáng)腐蝕、強(qiáng)光等環(huán)境中進(jìn)行振動(dòng)檢測(cè),對(duì)超聲波反射性能好、表面粗糙度小于超聲波波長(zhǎng)的表面都能對(duì)其進(jìn)行振動(dòng)檢測(cè)。因此,有必要對(duì)超聲波測(cè)振技術(shù)進(jìn)行深入研究。本文首先對(duì)超聲波振動(dòng)檢測(cè)技術(shù)及超聲波測(cè)振信號(hào)解調(diào)算法進(jìn)行了綜述;基于超聲波的多普勒效應(yīng)及聲參量效應(yīng)詳細(xì)介紹了超聲波測(cè)振原理,并建立了受振動(dòng)調(diào)制的超聲波反射回波數(shù)學(xué)模型;根據(jù)超聲波反射回波數(shù)學(xué)模型以及超聲波振動(dòng)檢測(cè)原理得出了影響超聲振動(dòng)檢測(cè)精度的三個(gè)主要因素—超聲波聲速、入射超聲波頻率、傳感器探頭安裝位置。對(duì)超聲波聲速的影響因素以及傳感器的安裝位置進(jìn)行了深入研究,提出了修正超聲聲速的方法,確定了傳感器的合理安裝位置。參考前人的研究成果,綜合考慮不同頻率超聲波在空氣中的傳播特性,選擇采用40KHz的超聲波信號(hào)進(jìn)行振動(dòng)檢測(cè)研究;以中心頻率為40 KHz超聲波傳感器直徑大小為研究對(duì)象,對(duì)不同尺寸的傳感器進(jìn)行聲場(chǎng)及指向性研究,基于該研究結(jié)果,結(jié)合成本因素及傳感器獲取的難易程度,對(duì)超聲波傳感器進(jìn)行選型。采用Hilbert變換解調(diào)算法及能量算子解調(diào)算法分別對(duì)超聲波測(cè)振仿真信號(hào)進(jìn)行解調(diào),提取出被測(cè)物體的振動(dòng)速度信號(hào)。針對(duì)選用Hilbert變換解調(diào)算法獲取的振動(dòng)速度曲線有端點(diǎn)效應(yīng),能量算子解調(diào)算法因誤差項(xiàng)的存在限制了所能測(cè)量的振動(dòng)頻率范圍從而影響解調(diào)精度問題,提出了一種改進(jìn)的歸一化復(fù)域能量算子解調(diào)算法并用該算法對(duì)超聲波測(cè)振信號(hào)進(jìn)行處理,將處理結(jié)果與Hilbert變換解調(diào)算法及能量算子解調(diào)算法的解調(diào)結(jié)果進(jìn)行對(duì)比分析,結(jié)果表明該方法能獲得更好的解調(diào)效果。最后,基于上述研究進(jìn)行超聲波振動(dòng)檢測(cè)系統(tǒng)設(shè)計(jì),搭建超聲振動(dòng)檢測(cè)實(shí)驗(yàn)臺(tái),開展超聲波振動(dòng)檢測(cè)實(shí)驗(yàn),將超聲波測(cè)振信號(hào)解調(diào)得到的振動(dòng)速度與加速度傳感器輸出信號(hào)積分求得的振動(dòng)速度信號(hào)進(jìn)行對(duì)比分析,實(shí)驗(yàn)結(jié)果證明了上述理論研究的正確性和可行性。
[Abstract]:Non-contact vibration detection method is an important kind of mechanical vibration detection method, which plays an irreplaceable role in the field of vibration detection. It can be used to detect vibration without disturbing the object, especially for rough, fine, light and flexible structure. In the common non-contact vibration detection method, Ultrasonic vibration detection method based on ultrasonic has its own unique advantages, such as high measuring precision, simple measuring circuit, low cost and strong generality. It can be used in smoke, opaque gas, strong corrosion, etc. Vibration detection in strong light and other environments can detect the vibration of ultrasonic wave when the surface roughness is less than ultrasonic wave length. It is necessary to study the ultrasonic vibration measurement technology deeply. Firstly, the ultrasonic vibration detection technology and the demodulation algorithm of ultrasonic vibration signal are summarized in this paper. Based on the Doppler effect and parametric effect of ultrasonic wave, the principle of ultrasonic vibration measurement is introduced in detail, and the mathematical model of ultrasonic reflection echo modulated by vibration is established. According to the mathematical model of ultrasonic reflection echo and the principle of ultrasonic vibration detection, three main factors affecting the accuracy of ultrasonic vibration detection are obtained: ultrasonic velocity, ultrasonic frequency, and ultrasonic frequency. The influence factors of ultrasonic sound velocity and the installation position of sensor are studied in depth, and the method of correcting ultrasonic sound velocity is put forward, and the reasonable installation position of sensor is determined. Considering the propagation characteristics of ultrasonic wave with different frequencies in the air, the ultrasonic signal of 40kHz is selected for vibration detection, and the diameter of the ultrasonic sensor with central frequency of 40kHz is taken as the research object. The acoustic field and directivity of sensors with different sizes are studied. Based on the results of the research, combined with the cost factors and the degree of difficulty in obtaining the sensors, Hilbert transform demodulation algorithm and energy operator demodulation algorithm are used to demodulate the simulation signal of ultrasonic vibration measurement. The vibration velocity signal of the measured object is extracted. The vibration velocity curve obtained by using the Hilbert transform demodulation algorithm has an endpoint effect. The energy operator demodulation algorithm limits the range of vibration frequency which can be measured because of the existence of error term, which affects the demodulation accuracy. An improved normalized complex energy operator demodulation algorithm is proposed to process ultrasonic vibration signal. The results are compared with those of Hilbert transform demodulation algorithm and energy operator demodulation algorithm. The results show that this method can obtain better demodulation effect. Finally, the ultrasonic vibration detection system is designed based on the above research, and the ultrasonic vibration detection experiment bench is built, and the ultrasonic vibration detection experiment is carried out. The vibration velocity obtained by demodulating the ultrasonic vibration signal is compared with the vibration velocity signal obtained by the integral of the output signal of the acceleration sensor. The experimental results prove the correctness and feasibility of the above theoretical research.
【學(xué)位授予單位】:華東交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH113.1;TB559
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曹青松;陳剛;周繼惠;;超聲波測(cè)振信號(hào)的Hilbert變換解調(diào)方法研究[J];測(cè)試技術(shù)學(xué)報(bào);2016年05期
2 曹青松;陳剛;畢彬杰;周繼惠;;超聲波測(cè)振信號(hào)的能量算子解調(diào)方法[J];噪聲與振動(dòng)控制;2016年05期
3 周繼惠;陳剛;曹青松;猶X;;基于多普勒效應(yīng)的超聲波測(cè)振系統(tǒng)設(shè)計(jì)[J];儀表技術(shù)與傳感器;2015年07期
4 辛松;芮筱亭;王國(guó)平;張建書;楊富鋒;;艦載多管火箭振動(dòng)控制方法研究[J];南京理工大學(xué)學(xué)報(bào);2015年01期
5 蔡光昭;洪遠(yuǎn)泉;周永明;;基于STM32的超聲波測(cè)速測(cè)距系統(tǒng)設(shè)計(jì)[J];現(xiàn)代電子技術(shù);2014年24期
6 王麗莉;;海拔高度與大氣壓關(guān)系的回歸計(jì)算[J];價(jià)值工程;2014年23期
7 孟宗;李?yuàn)檴?季艷;;基于對(duì)稱差分能量算子解調(diào)的局部均值分解端點(diǎn)效應(yīng)抑制方法[J];機(jī)械工程學(xué)報(bào);2014年13期
8 曾鳴;楊宇;鄭近德;程軍圣;;歸一化復(fù)域能量算子解調(diào)及其在轉(zhuǎn)子碰摩故障診斷中的應(yīng)用[J];機(jī)械工程學(xué)報(bào);2014年05期
9 劉雪林;史湘?zhèn)?黃興洲;薛德寬;陳文娟;;超聲波測(cè)距聲場(chǎng)仿真研究[J];現(xiàn)代電子技術(shù);2014年05期
10 任達(dá)千;楊世錫;吳昭同;嚴(yán)拱標(biāo);孟慶波;;信號(hào)瞬時(shí)頻率直接計(jì)算法與Hilbert變換及Teager能量法比較[J];機(jī)械工程學(xué)報(bào);2013年09期
相關(guān)博士學(xué)位論文 前1條
1 潘仲明;大量程超聲波測(cè)距系統(tǒng)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前6條
1 謝齊;軌道不平順作用下高速列車運(yùn)行舒適性分析[D];大連理工大學(xué);2014年
2 邢傳奇;基于光纖干涉儀的非接觸振動(dòng)測(cè)試技術(shù)研究[D];大連理工大學(xué);2013年
3 朱宇川;飛機(jī)發(fā)動(dòng)機(jī)振動(dòng)檢測(cè)設(shè)備標(biāo)定裝置的研發(fā)[D];武漢理工大學(xué);2013年
4 孟凡凱;水下超聲波檢測(cè)聲場(chǎng)數(shù)值模擬與實(shí)驗(yàn)分析[D];哈爾濱工業(yè)大學(xué);2012年
5 蒙海英;基于MATLAB的超聲波聲場(chǎng)模擬及可視化研究[D];大連理工大學(xué);2008年
6 陳印梅;基于LabVIEW的大型旋轉(zhuǎn)機(jī)械趨勢(shì)分析與狀態(tài)監(jiān)測(cè)系統(tǒng)的研究與應(yīng)用[D];武漢科技大學(xué);2006年
,本文編號(hào):1602842
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1602842.html