電站自吸泵氣液混合與分離及性能優(yōu)化研究
本文關(guān)鍵詞: 外混式自吸泵 改型設(shè)計(jì) 數(shù)值模擬 氣液兩相流動(dòng) 非定常 出處:《蘭州理工大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:近幾年來(lái),由于自吸泵優(yōu)越的水利性能和使用的方便性,在工農(nóng)業(yè)生產(chǎn)領(lǐng)域得到廣泛應(yīng)用,相比液下泵抽水易出故障,檢修不便,自吸泵在這方面有足夠的保障,部分水電站逐漸采用自吸泵代替原先的液下泵。自吸泵的安全性和穩(wěn)定性是近幾年來(lái)水泵領(lǐng)域研究的熱門話題和科研的重要方向,而水力性能是否優(yōu)越和自吸時(shí)間和自吸高度是否達(dá)標(biāo)都成為關(guān)鍵的衡量指標(biāo)。自吸泵的啟動(dòng)過(guò)程是一個(gè)復(fù)雜的非定常氣液兩相流動(dòng)問(wèn)題,其氣液混合和分離的好壞,直接影響自吸時(shí)間和自吸高度,而自吸時(shí)間和自吸高度是衡量自吸泵自吸性能的關(guān)鍵指標(biāo)?梢娧芯坎⒄业阶晕脝(dòng)過(guò)程的氣液兩相流動(dòng)規(guī)律是改善自吸泵自吸性能的關(guān)鍵。本文主要從自吸泵現(xiàn)有的設(shè)計(jì)理論出發(fā),對(duì)ZX80外混式自吸泵進(jìn)行改型設(shè)計(jì);結(jié)合應(yīng)用計(jì)算流體力學(xué)CFD模擬技術(shù),對(duì)比改型前后的水力性能及內(nèi)部流動(dòng)情況進(jìn)行對(duì)比分析,說(shuō)明改型的合理性和可行性。在改型的基礎(chǔ)上研究外混式自吸泵自吸過(guò)程的非定常氣液兩相流動(dòng)規(guī)律。主要工作和研究成果如下:(1)選用ZX80外混式自吸泵作為本文的研究對(duì)象。在原先圖紙的基礎(chǔ)上,結(jié)合近幾年自吸泵的設(shè)計(jì)理論的研究,對(duì)ZX80自吸泵進(jìn)行設(shè)計(jì)。(2)建立改型前后的ZX80外混式自吸泵的物理模型,分別進(jìn)行網(wǎng)格的劃分,利用雷諾平均法和標(biāo)準(zhǔn)k-ε雙方程湍流模型,取5個(gè)流量工況點(diǎn)對(duì)改型前后的ZX80外混式自吸泵進(jìn)行定常數(shù)值模擬計(jì)算。(3)在改型前后ZX80外混式自吸泵定常數(shù)值模擬結(jié)果的基礎(chǔ)上,分別對(duì)外特性和內(nèi)部流場(chǎng)進(jìn)行對(duì)比分析。一方面將改型前后ZX80泵的流量-揚(yáng)程曲線、流量-軸功率曲線、流量-效率曲線進(jìn)行了對(duì)比,研究發(fā)現(xiàn):對(duì)氣液分離室進(jìn)行改型后,其揚(yáng)程、效率有所提高,軸功率減小;另一方面通過(guò)對(duì)改型前后的氣液分離室的流線和湍動(dòng)能耗散率進(jìn)行分析,改型后的流線更為順暢,氣液分離室的流動(dòng)紊亂程度降低、效率提高。可見,本文對(duì)于對(duì)于分離室的改型是成功的,不僅提高了ZX80泵的水利性能,同時(shí)也改善了氣液分離室的紊亂渦態(tài)的分布。(4)基于多相流理論基礎(chǔ),對(duì)改型后的ZX80外混式自吸泵啟動(dòng)過(guò)程進(jìn)行數(shù)值模擬。設(shè)置進(jìn)口邊界條件為速度進(jìn)口,利用C語(yǔ)言編程,將接近實(shí)際的速度變化程序?qū)隖luent軟件自帶的UDF,使進(jìn)口速度的變化更接近實(shí)際情況;探討啟動(dòng)過(guò)程中的氣液兩相流動(dòng)現(xiàn)象,描述研究自吸泵內(nèi)部流場(chǎng)的演變過(guò)程。
[Abstract]:In recent years, due to its superior water conservancy performance and ease of use, the self-priming pump has been widely used in the field of industrial and agricultural production. Compared with the subliquid pump, pumping water is prone to failure and maintenance is inconvenient, so the self-priming pump has sufficient protection in this respect. In some hydropower stations, the self-priming pump has been gradually used instead of the original submersible pump. The safety and stability of the self-priming pump has been a hot topic and an important direction of scientific research in the field of water pump in recent years. Whether the hydraulic performance is superior or not and whether the self-priming time and height are up to the standard are the key indexes. The starting process of the self-priming pump is a complicated problem of gas-liquid two-phase flow, and its gas-liquid mixing and separation are good or bad. Directly affect the time and height of self-priming, The self-priming time and height are the key indexes to measure the self-priming performance of the self-priming pump. It can be seen that the gas-liquid two-phase flow pattern in the starting process of the self-priming pump is the key to improve the self-priming performance of the self-priming pump. The pump's current design theory, The design of ZX80 external mixing self-priming pump is modified, and the hydraulic performance and internal flow before and after modification are compared and analyzed by using CFD simulation technology of computational fluid dynamics. On the basis of the modification, the unsteady gas-liquid two-phase flow law of the self-priming process of the external mixing self-priming pump is studied. The main work and research results are as follows: 1) the ZX80 external mixing self-priming pump is selected as this paper. Based on the original drawings, Combined with the research of the design theory of the self-priming pump in recent years, the physical model of the ZX80 external self-priming pump before and after modification is established. The physical model of the ZX80 external self-priming pump before and after modification is established, and the grid is divided, and the Reynolds average method and the standard k- 蔚 two-equation turbulence model are used. The steady numerical simulation of ZX80 external mixing self-priming pump before and after modification was carried out at five flow rate working points. (3) on the basis of the steady numerical simulation results of ZX80 external mixing self-priming pump before and after the modification, On the one hand, the flow-head curve, flow-axis power curve and flow-efficiency curve of ZX80 pump before and after modification were compared. On the other hand, by analyzing the streamline and turbulent kinetic energy dissipation rate of the gas-liquid separation chamber before and after the modification, the flow line of the modified chamber is more smooth, and the flow disorder degree of the gas-liquid separation chamber is reduced. It can be seen that the modification of the separation chamber is successful in this paper, which not only improves the hydraulic performance of the ZX80 pump, but also improves the distribution of the turbulent vortex state in the gas-liquid separation chamber based on the theory of multiphase flow. The starting process of the modified ZX80 external mixing self-priming pump is numerically simulated. The inlet boundary condition is set as the velocity inlet, and the C language is used to program. In order to make the change of inlet velocity closer to the actual situation, this paper discusses the phenomenon of gas-liquid two-phase flow during start-up, and describes the evolution process of flow field in self-priming pump.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH317
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 夏麗;武鵬;吳大轉(zhuǎn);;蝸殼回流孔對(duì)自吸泵性能的影響[J];工程設(shè)計(jì)學(xué)報(bào);2015年03期
2 楊軍虎;許亭;;氣液兩相介質(zhì)的多級(jí)液力透平特性[J];蘭州理工大學(xué)學(xué)報(bào);2015年02期
3 劉在倫;吳佼;曾繼來(lái);張森;孫雨;;浮動(dòng)葉輪軸向位移量對(duì)泵水力性能的影響[J];蘭州理工大學(xué)學(xué)報(bào);2015年02期
4 李紅;姜波;陸天橋;;泵自吸過(guò)程氣液兩相流的可視化試驗(yàn)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2015年08期
5 孫浩哲;李曉坤;閆志遠(yuǎn);金愛(ài)娟;;對(duì)于管路氣液兩相流流型分布的研究[J];內(nèi)蒙古石油化工;2014年21期
6 王曉升;馮建剛;陳紅勛;卜立峰;譚琳露;;泵站虹吸式出水管虹吸形成過(guò)程氣液兩相流數(shù)值模擬[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年05期
7 曹芳濱;張思青;張曉旭;;長(zhǎng)短葉片水輪機(jī)轉(zhuǎn)輪氣液兩相流的數(shù)值模擬[J];水電能源科學(xué);2013年12期
8 任星杰;;立式長(zhǎng)軸泵與無(wú)密封自吸泵在軋鋼濁循環(huán)水系統(tǒng)中的應(yīng)用對(duì)比[J];科技信息;2013年25期
9 李紅;徐德懷;李磊;涂琴;鄒晨海;;自吸泵自吸過(guò)程瞬態(tài)流動(dòng)的數(shù)值模擬[J];排灌機(jī)械工程學(xué)報(bào);2013年07期
10 張德勝;吳蘇青;施衛(wèi)東;潘大志;姚捷;張光建;;不同湍流模型在軸流泵葉頂泄漏渦模擬中的應(yīng)用與驗(yàn)證[J];農(nóng)業(yè)工程學(xué)報(bào);2013年13期
相關(guān)博士學(xué)位論文 前2條
1 王春林;旋流自吸泵設(shè)計(jì)及內(nèi)部流動(dòng)研究[D];江蘇大學(xué);2010年
2 李志峰;離心泵啟動(dòng)過(guò)程瞬態(tài)流動(dòng)的數(shù)值模擬和實(shí)驗(yàn)研究[D];浙江大學(xué);2009年
相關(guān)碩士學(xué)位論文 前7條
1 王俠;覆冰導(dǎo)線空氣動(dòng)力特性風(fēng)洞試驗(yàn)及數(shù)值模擬[D];重慶大學(xué);2012年
2 李新凱;氣液混輸泵優(yōu)化設(shè)計(jì)及其數(shù)值模擬[D];蘭州理工大學(xué);2012年
3 李嘉;立式螺旋管內(nèi)氣液兩相流摩擦阻力特性研究[D];浙江工業(yè)大學(xué);2011年
4 劉高博;混輸泵半螺旋形吸入室流場(chǎng)模擬及設(shè)計(jì)修型[D];蘭州理工大學(xué);2011年
5 趙希楓;基于CFD技術(shù)改善離心泵內(nèi)部空化性能的研究[D];蘭州理工大學(xué);2009年
6 韓榮耀;CVD金剛石膜鈍頭體飛行溫度與壓力的仿真研究[D];南京航空航天大學(xué);2007年
7 耿存杰;槽道式氣體流量標(biāo)準(zhǔn)裝置的研究[D];南京航空航天大學(xué);2007年
,本文編號(hào):1522850
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1522850.html