3P-Delta并聯(lián)機構(gòu)的參數(shù)優(yōu)化與軌跡規(guī)劃
本文關(guān)鍵詞: 并聯(lián)機構(gòu) 運動學分析 工作空間 參數(shù)優(yōu)化 軌跡規(guī)劃 出處:《中北大學》2017年碩士論文 論文類型:學位論文
【摘要】:并聯(lián)機構(gòu)由于其運動學和動力學性能良好,已廣泛應用于航空航天、醫(yī)療康復及排險救災等各個領(lǐng)域。3P-Delta并聯(lián)機構(gòu)為空間三自由度平動并聯(lián)機構(gòu),具有結(jié)構(gòu)簡單、易于控制等優(yōu)點,可應用于分揀、搬運、封裝等自動化生產(chǎn)線中。本文以3P-Delta并聯(lián)機構(gòu)為研究對象,對3P-Delta并聯(lián)機構(gòu)的運動學、參數(shù)優(yōu)化、運動仿真及軌跡規(guī)劃等方面進行研究。首先,對3P-Delta并聯(lián)機構(gòu)進行了自由度計算,確定了機構(gòu)具有三維平移的運動形式。利用閉環(huán)矢量法建立機構(gòu)的運動學方程,求解得到機構(gòu)的位置正、逆解。對機構(gòu)的運動學方程進行一階泰勒展開,得出機構(gòu)的雅可比矩陣表達式,利用雅可比矩陣求出了機構(gòu)的奇異位形。其次,基于機構(gòu)的位置逆解,采用數(shù)值搜索法對3P-Delta并聯(lián)機構(gòu)的工作空間進行求解,用Matlab軟件對求解過程進行編程,得到了機構(gòu)的工作空間三維圖。用Solid Works軟件建立機構(gòu)的三維模型,對機構(gòu)進行了運動仿真,得出機構(gòu)的工作空間邊界曲線。與Matlab軟件求得的工作空間比較,兩種方法得到的工作空間大小和形狀基本相同,驗證了所求工作空間的正確性。基于微分思想,將3P-Delta并聯(lián)的工作空間分割成許多微小子空間,以此求得機構(gòu)工作空間體積。根據(jù)3P-Delta并聯(lián)機構(gòu)的雅可比矩陣,對機構(gòu)的雅可比條件數(shù)進行分析,得出工作空間內(nèi)各處雅可比條件數(shù)的值,并求得3P-Delta并聯(lián)機構(gòu)的全局雅可比條件數(shù)。用遺傳算法對3P-Delta并聯(lián)機構(gòu)進行了結(jié)構(gòu)參數(shù)優(yōu)化,分析了機構(gòu)的各結(jié)構(gòu)參數(shù)對工作空間體積和全局雅可比條件數(shù)的影響。分別以工作空間體積最大化和全局雅可比條件數(shù)最小化為優(yōu)化目標,選擇合適的優(yōu)化參數(shù),對機構(gòu)進行了優(yōu)化。然后,利用ADAMS軟件建立3P-Delta并聯(lián)機構(gòu)的虛擬樣機模型,對3P-Delta并聯(lián)機構(gòu)進行了位置正逆解、速度和加速度的運動仿真,得到機構(gòu)的運動規(guī)律曲線。將得到的曲線與對3P-Delta并聯(lián)機構(gòu)理論求解得到的曲線相對比,兩種方法得到的曲線基本重合,驗證了機構(gòu)運動學理論分析的正確性。最后,對3P-Delta并聯(lián)機構(gòu)分別進行五次多項式插值規(guī)劃和梯形速度曲線規(guī)劃,搭建了3P-Delta并聯(lián)機構(gòu)的實驗樣機平臺,選擇梯形速度曲線對實驗樣機進行軌跡規(guī)劃、測試。通過軌跡規(guī)劃,使得動平臺能以良好的運動學性能通過給定的路徑,并通過實驗驗證軌跡規(guī)劃的可行性。
[Abstract]:Because of its good kinematics and dynamic performance, the parallel mechanism has been widely used in aerospace, medical rehabilitation, disaster relief and other fields. The 3P-Delta parallel mechanism is a 3-DOF parallel mechanism with a simple structure. It is easy to control and can be used in automatic production lines such as sorting, handling and packaging. In this paper, the kinematics and parameter optimization of 3P-Delta parallel mechanism is studied. The kinematics simulation and trajectory planning are studied. Firstly, the degree of freedom of the 3P-Delta parallel mechanism is calculated, and the kinematic equation of the mechanism is established by using the closed-loop vector method. The position forward and inverse solutions of the mechanism are obtained. The first order Taylor expansion of the kinematics equation of the mechanism is carried out. The Jacobian matrix expression of the mechanism is obtained. The singular configuration of the mechanism is obtained by using the Jacobian matrix. Secondly, based on the position inverse solution of the mechanism, The workspace of 3P-Delta parallel mechanism is solved by numerical search method, the solution process is programmed by Matlab software, and the three-dimensional graph of the mechanism workspace is obtained. The three-dimensional model of the mechanism is established by Solid Works software, and the kinematic simulation of the mechanism is carried out. The workspace boundary curve of the mechanism is obtained. Compared with the workspace obtained by Matlab software, the size and shape of the workspace obtained by the two methods are basically the same, which verifies the correctness of the workspace. The workspace of 3P-Delta parallel mechanism is divided into many micro-small spaces, and the workspace volume of the mechanism is obtained. According to the Jacobian matrix of 3P-Delta parallel mechanism, the Jacobian condition number of the mechanism is analyzed. The values of Jacobian conditions are obtained and the global Jacobian conditions of 3P-Delta parallel mechanisms are obtained. The structural parameters of 3P-Delta parallel mechanisms are optimized by genetic algorithm. The effects of structural parameters on the workspace volume and the number of global Jacobian conditions are analyzed. The optimum parameters are chosen to maximize the volume of the workspace and minimize the number of global Jacobian conditions, respectively. Then, the virtual prototype model of 3P-Delta parallel mechanism is established by using ADAMS software, and the position inverse solution, velocity and acceleration of the 3P-Delta parallel mechanism are simulated. The kinematic curve of the mechanism is obtained. Compared with the curve obtained by the theoretical solution of 3P-Delta parallel mechanism, the curves obtained by the two methods basically coincide with each other, which verifies the correctness of the kinematics theory analysis of the mechanism. The fifth polynomial interpolation planning and trapezoidal velocity curve planning of 3P-Delta parallel mechanism are carried out respectively. The experimental prototype platform of 3P-Delta parallel mechanism is built. The trapezoidal velocity curve is selected to plan and test the trajectory of the experimental prototype. The platform can pass through a given path with good kinematic performance, and the feasibility of trajectory planning is verified by experiments.
【學位授予單位】:中北大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH112
【參考文獻】
相關(guān)期刊論文 前10條
1 王書森;梅瑛;李瑞琴;;新型3T2R龍門式混聯(lián)機床動力學模型[J];機械工程學報;2016年15期
2 王飛博;陳巧紅;武傳宇;李秦川;;2-UPR-SPR并聯(lián)機構(gòu)尺度綜合[J];機械工程學報;2015年21期
3 柴馨雪;項濟南;李秦川;;2-UPR-RPU并聯(lián)機構(gòu)奇異分析[J];機械工程學報;2015年13期
4 劉涼;陳超英;趙新華;;考慮關(guān)節(jié)摩擦的并聯(lián)機器人平滑軌跡規(guī)劃[J];機械工程學報;2014年19期
5 路松;趙永杰;何俊;陳少波;;考慮躍度影響的四自由度并聯(lián)機構(gòu)軌跡規(guī)劃[J];中國機械工程;2014年06期
6 鄒愉;張玉茹;王黨校;;求解柔索驅(qū)動并聯(lián)機構(gòu)最大任務空間的區(qū)間分析法[J];機械工程學報;2014年05期
7 汪滿新;黃田;;面對稱3-S■R并聯(lián)機構(gòu)的運動學分析與尺度綜合[J];機械工程學報;2013年15期
8 劉志忠;柳洪義;羅忠;張秀珩;;機器人工作空間求解的蒙特卡洛法改進[J];農(nóng)業(yè)機械學報;2013年01期
9 唐樂為;唐曉強;汪勁松;柴曉明;;七索并聯(lián)對接機構(gòu)作業(yè)空間分析及索力優(yōu)化設(shè)計[J];機械工程學報;2012年21期
10 張斌;;基于多約束的機器人關(guān)節(jié)空間軌跡規(guī)劃[J];機械工程學報;2011年21期
,本文編號:1519106
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1519106.html