數(shù)字化真實(shí)齒面構(gòu)造及嚙合特性研究
本文關(guān)鍵詞: 準(zhǔn)雙曲面齒輪 建模 NURBS 數(shù)字化齒面 齒面接觸分析 出處:《西安工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:螺旋錐齒輪作為動(dòng)力傳輸?shù)年P(guān)鍵部件,是形式最為復(fù)雜、應(yīng)用最廣泛的機(jī)械動(dòng)力傳輸元件之一,特別適用于大批量生產(chǎn)的汽車行業(yè),在歐美廣泛應(yīng)用于各類輕重型卡車以及SUV等的車橋齒輪傳動(dòng)中,其設(shè)計(jì)、加工和嚙合傳動(dòng)質(zhì)量等一直都是機(jī)械傳動(dòng)領(lǐng)域研究的熱點(diǎn)問題。由于準(zhǔn)雙曲面齒輪的高度復(fù)雜性,使得在設(shè)計(jì)和制造的某些方面還存在著缺陷和不足,這在某種程度上制約著我國自主設(shè)計(jì)水平的提高以及工藝的改進(jìn)。本文針對(duì)現(xiàn)有的數(shù)字化齒面重構(gòu)算法不夠準(zhǔn)確以及精度較低的問題,基于非均勻有理B樣條曲面重構(gòu)的理論,提出了一套準(zhǔn)雙曲面齒輪數(shù)字化齒面構(gòu)造算法。之后提出了數(shù)字化真實(shí)齒面嚙合分析,在準(zhǔn)確反映實(shí)際齒面的接觸印痕和傳動(dòng)誤差的同時(shí),量化的反映實(shí)際齒面與理論齒面在嚙合性能上的差別;通過本論文的研究,實(shí)現(xiàn)了N RBS曲面的高精度重構(gòu),完成了基于NURBS的準(zhǔn)雙曲面齒輪真實(shí)齒面的嚙合特性研究,為實(shí)現(xiàn)航空、汽車行業(yè)齒輪制造的數(shù)字化、信息化及質(zhì)量檢驗(yàn)的標(biāo)準(zhǔn)化奠定了基礎(chǔ)。本論文的主要研究內(nèi)容可以歸納為以下幾個(gè)方面:(1)通過比較大輪成形法、展成法加工,小輪刀傾法、變性法加工,研究了準(zhǔn)雙曲面齒輪的實(shí)體建模方法,選取展成法加工大輪,變性法加工小輪,利用齒輪嚙合原理推導(dǎo)了大小輪齒面方程,通過齒面方程將軸截面內(nèi)的網(wǎng)格點(diǎn)與齒面離散點(diǎn)建立了一一對(duì)應(yīng)關(guān)系,之后通過MATLAB編程求解了大小輪齒面各45個(gè)點(diǎn)的三維坐標(biāo)值,利用三維軟件CATIA實(shí)現(xiàn)了準(zhǔn)雙曲面齒輪副的實(shí)體建模。(2)針對(duì)現(xiàn)有的數(shù)字化齒面重構(gòu)算法不夠準(zhǔn)確以及精度較低的問題,為了滿足航空航天對(duì)齒面高精度的需求,研究完善了 一套高精度的數(shù)字化齒面重構(gòu)算法,通過考慮首末端切矢,采用積累弦長參數(shù)化法得到節(jié)點(diǎn)矢量,進(jìn)一步求得控制頂點(diǎn),獲得了數(shù)字化齒面,再通過絕對(duì)誤差分析,得出NURBS曲面的最大擬合誤差不大于0.1μm,滿足了航空航天的使用要求。(3)分析了測量路徑對(duì)螺旋錐齒輪齒面誤差的測量精度和測量效率的影響,規(guī)劃了大小輪齒面誤差的測量路徑。并通過齒輪測量中心測得大輪凸面、小輪凹面偏差,獲得了實(shí)際齒面的三維坐標(biāo),再次通過擬合得到了數(shù)字化真實(shí)齒面,最后通過IGES文件輸出,得到了真實(shí)齒輪副。(4)深入研究了數(shù)字化真實(shí)齒面嚙合特性,先是完成對(duì)理論齒輪副的裝配以及真實(shí)齒輪副的裝配,再通過齒面接觸分析獲得了理論齒輪副的接觸區(qū)域、傳動(dòng)誤差,并通過UG模擬接觸區(qū);再運(yùn)用NURBS曲面的定義求解了真實(shí)齒輪副的接觸跡線和傳動(dòng)誤差,同時(shí)通過UG模擬接觸區(qū)域,最后運(yùn)用最小轉(zhuǎn)角法求解真實(shí)齒輪副接觸區(qū),并比較了三者的相同點(diǎn)和不同點(diǎn)。(5)通過Y9550滾檢機(jī)對(duì)大輪工作面和非工作面進(jìn)行了滾檢實(shí)驗(yàn)。結(jié)果表明,采用數(shù)字化真實(shí)齒面接觸分析能夠代替?zhèn)鹘y(tǒng)的滾檢方法,即以高精度逼近實(shí)際齒面的數(shù)字化真實(shí)齒面可以代替實(shí)際齒面進(jìn)行TCA,為后期實(shí)際生產(chǎn)中準(zhǔn)雙曲面齒輪嚙合質(zhì)量檢驗(yàn)的數(shù)字化和標(biāo)準(zhǔn)化提供了有效途徑。
[Abstract]:Spiral bevel gear is a key part of power transmission, is the most complex form of mechanical power transmission components, one of the most widely used, especially suitable for the mass production of the automotive industry, the design of axle gear transmission is widely used in all kinds of light truck and SUV applications in Europe and America, and the processing and meshing quality has been it is a hot topic in the research field of mechanical transmission. Due to the high complexity of the hypoid gear, which in some aspects of design and manufacture there still exist shortcomings, which restricts the improvement of independent design and enhancing the level of technology of our country to a certain extent. Based on the existing digital tooth surface reconstruction algorithm is not accurate enough and the low precision problem of non uniform rational B spline surface reconstruction based on the theory, put forward a set of digital tooth surfaces of hypoid gears. After the proposed algorithm The analysis of digital tooth surface meshing, accurately reflect the actual tooth surface contact pattern and transmission errors at the same time, the difference reflects the actual tooth surface and the theoretical tooth surface meshing performance in quantitative; through the research of this paper, realized the high precision reconstruction of N RBS surface finish, surface meshing characteristics of hypoid gears real tooth based on NURBS, to realize digital aviation, automobile industry gear manufacturing, laid the foundation for the informationization and the standardization of quality inspection. The main research contents of this thesis can be summarized as follows: (1) through the comparison of the big wheel forming method, generating machining, wheel tilt knife method, modified processing method the study, the modeling method of the hypoid gear, select the generating method to process large wheel, modified pinion, the gear meshing principle is deduced by the size of the tooth surface equation, the equation of the tooth surface will be in the axial section The discrete grid points and tooth surface points established corresponding relation, then through the MATLAB programming to solve the three-dimensional coordinates of the size of the tooth surface of each 45 point value, to achieve a solid modeling of hypoid gears using 3D software CATIA. (2) according to the existing digital tooth surface reconstruction algorithm is not accurate enough and low precision the problem, in order to meet the demand of aerospace tooth surface with high precision, the research perfected a high precision digital tooth surface reconstruction algorithm, by considering the tangent at the end of the first, to get the node vector using the accumulated chord length parameterization method, and further seek control points, obtain the digital tooth surface, through the absolute maximum fitting error analysis the error that the NURBS surface is not greater than 0.1 M, meet the aerospace requirements. (3) to analyze the influence of measurement path on the spiral bevel gear tooth surface error measurement accuracy and efficiency, compliance The size of the tooth surface measuring path error. And through the gear measuring center measured wheel convex, concave wheel deviation, the actual tooth surface coordinates, again the digital tooth surface is obtained by fitting, and finally through the IGES output file, get a real gear. (4) further digitization of real tooth surface meshing characteristics of the study, the first complete theory of gear assembly and assembly real gear tooth contact analysis, then get the contact area, the theory of gear transmission error, and through the UG simulation of contact area; then use the definition to solve NURBS surface contact traces and real transmission error of gear pair. At the same time through the UG simulation of the contact area, finally using the minimum angle method to calculate the real gear contact area, and compared to the three of the same and different points. (5) the rolling inspection machine by Y9550 on the big round face and non working The surface of rolling test. The results show that the digital real tooth contact analysis of rolling test method can replace the traditional, with high accuracy approximation of the actual tooth surface digital tooth surface can replace the actual tooth surface by TCA, provides an effective way for the digitalization and standardization of the hypoid gear meshing quality inspection period in the actual production.
【學(xué)位授予單位】:西安工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH132.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊林;明希軍;;HGM準(zhǔn)雙曲面齒輪小輪控制參數(shù)的確定[J];重型機(jī)械;2016年04期
2 王磊;曹雪梅;鄧效忠;雷保珍;;基于加工中心切齒的弧齒錐齒輪齒面修形技術(shù)研究[J];機(jī)械傳動(dòng);2016年02期
3 杜進(jìn)輔;方宗德;岳貴平;高洪彪;趙國銳;;奧利康擺線齒準(zhǔn)雙曲面齒輪輪齒接觸分析及試驗(yàn)驗(yàn)證[J];機(jī)械傳動(dòng);2015年08期
4 孫殿柱;魏亮;李延瑞;白銀來;;基于局部樣本增益優(yōu)化的α-shape曲面拓?fù)渲亟╗J];機(jī)械工程學(xué)報(bào);2016年03期
5 王藝杰;李建華;王三民;;人字齒輪傳動(dòng)的靜態(tài)和動(dòng)態(tài)接觸特性研究[J];機(jī)械制造;2014年10期
6 許洪斌;胡建軍;張衛(wèi)青;凌文凱;;基于數(shù)值計(jì)算的近凈成形直齒錐齒輪齒形精度控制方法[J];中國機(jī)械工程;2014年17期
7 陳燕麗;宋緒丁;;基于B樣條遞推算法的NURBS雙四次曲面矩陣表示[J];制造業(yè)自動(dòng)化;2014年04期
8 蔣進(jìn)科;方宗德;蘇進(jìn)展;;斜齒輪實(shí)際齒面接觸分析技術(shù)[J];西北工業(yè)大學(xué)學(xué)報(bào);2013年06期
9 張婧;王太勇;李琳;鄭惠江;李敬財(cái);;螺旋錐齒輪數(shù)控切削仿真系統(tǒng)研究[J];計(jì)算機(jī)工程與應(yīng)用;2013年16期
10 孫殿柱;王超;劉華東;李延瑞;;基于三角Bézier曲面平刀環(huán)切粗加工刀軌生成算法[J];計(jì)算機(jī)集成制造系統(tǒng);2012年10期
相關(guān)博士學(xué)位論文 前1條
1 李敬財(cái);螺旋錐齒輪數(shù)字化制造基礎(chǔ)應(yīng)用技術(shù)研究[D];天津大學(xué);2008年
,本文編號(hào):1479923
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1479923.html