基于包絡(luò)譜分析的滾動(dòng)軸承故障診斷方法研究
本文關(guān)鍵詞:基于包絡(luò)譜分析的滾動(dòng)軸承故障診斷方法研究 出處:《煤礦機(jī)械》2017年02期 論文類型:期刊論文
更多相關(guān)文章: 故障診斷 小波分解 小波包分解 EMD分解 Hilbert變換
【摘要】:分別用小波分解、小波包分解和EMD分解處理滾動(dòng)軸承故障數(shù)據(jù),并結(jié)合Hilbert變換進(jìn)行包絡(luò)譜分析實(shí)現(xiàn)滾動(dòng)軸承故障診斷。對(duì)滾動(dòng)軸承故障數(shù)據(jù)進(jìn)行小波閾值降噪。小波閾值降噪后分別進(jìn)行小波分解、小波包分解和EMD分解。分別求出小波分解、小波包分解和EMD分解后各個(gè)頻帶的能量譜。再根據(jù)能量譜確定故障頻帶范圍并對(duì)其進(jìn)行信號(hào)重構(gòu)。采用Hilbert變換對(duì)重構(gòu)信號(hào)進(jìn)行包絡(luò)譜分析實(shí)現(xiàn)滾動(dòng)軸承故障診斷。通過對(duì)滾動(dòng)軸承內(nèi)圈故障信號(hào)的分析驗(yàn)證了小波分解、小波包分解和EMD分解結(jié)合Hilbert變換進(jìn)行包絡(luò)譜分析的滾動(dòng)軸承故障診斷方法的有效性。
[Abstract]:Respectively, using wavelet decomposition, wavelet packet decomposition and EMD decomposition of rolling bearing fault data, and realize the envelope spectrum analysis of fault diagnosis of rolling bearing based on Hilbert transform. The rolling bearing fault data of wavelet threshold denoising. Wavelet threshold denoising after wavelet decomposition, wavelet packet decomposition and EMD decomposition were obtained. Wavelet decomposition, wavelet packet decomposition and EMD of each frequency band energy spectrum decomposition. According to the energy spectrum to determine the fault frequency range and the signal reconstruction. Using Hilbert transform to reconstruct signal envelope spectrum analysis realization of rolling bearing fault diagnosis. Through the analysis of the inner ring of the rolling bearing fault signal to verify the wavelet decomposition, wavelet packet decomposition and EMD decomposition based on Hilbert transform is effective method of fault diagnosis of rolling bearing analysis of the envelope spectrum.
【作者單位】: 上海電力學(xué)院計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【分類號(hào)】:TH133.33
【正文快照】: 0 引言 典型的滾動(dòng)軸承故障包括外圈故障、內(nèi)圈故障和滾動(dòng)體故障,不同的滾動(dòng)軸承故障對(duì)應(yīng)著不同的故障頻率。所以,可以通過檢測(cè)不同的故障頻率進(jìn)行滾動(dòng)軸承故障診斷。檢測(cè)不同的故障頻率的方法主要包括小波分解、小波包分解和EMD分解等。小波分解僅對(duì)信號(hào)的低頻部分進(jìn)行分解
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張益純,劉振娟;滾動(dòng)軸承故障分析探討[J];內(nèi)燃機(jī)配件;2000年03期
2 秦愷,陳進(jìn),姜鳴,陳春梅;一種滾動(dòng)軸承故障特征提取的新方法——譜相關(guān)密度[J];振動(dòng)與沖擊;2001年01期
3 鄧長春;;聲發(fā)射法在滾動(dòng)軸承故障識(shí)別中的應(yīng)用[J];試驗(yàn)技術(shù)與試驗(yàn)機(jī);2002年Z2期
4 任昭蓉;滾動(dòng)軸承故障的小波診斷法[J];機(jī)械制造與自動(dòng)化;2004年06期
5 陸爽,田野;滾動(dòng)軸承故障特征識(shí)別的時(shí)頻分析研究[J];機(jī)床與液壓;2005年06期
6 江涌;基于余弦調(diào)頻小波變換的滾動(dòng)軸承故障研究[J];機(jī)械設(shè)計(jì)與制造;2005年06期
7 程光友;;時(shí)域指標(biāo)在滾動(dòng)軸承故障診斷中的應(yīng)用[J];中國設(shè)備工程;2005年12期
8 陳洪軍;趙新澤;王延軍;;滾動(dòng)軸承故障試驗(yàn)臺(tái)的理論建模分析[J];四川理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年04期
9 李崇晟;滾動(dòng)軸承故障的非線性診斷方法[J];軸承;2005年05期
10 趙春華;嚴(yán)新平;趙新澤;袁成清;高虹亮;;滾動(dòng)軸承故障的可拓物元診斷方法[J];潤滑與密封;2006年04期
相關(guān)會(huì)議論文 前10條
1 張益純;;常見滾動(dòng)軸承故障診斷的技術(shù)探討[A];第十屆全國設(shè)備監(jiān)測(cè)與診斷技術(shù)學(xué)術(shù)會(huì)議論文集[C];2000年
2 劉玉林;;貨車滾動(dòng)軸承故障不分解診斷技術(shù)參數(shù)選擇與優(yōu)化探討[A];擴(kuò)大鐵路對(duì)外開放、確保重點(diǎn)物資運(yùn)輸——中國科協(xié)2005年學(xué)術(shù)年會(huì)鐵道分會(huì)場暨中國鐵道學(xué)會(huì)學(xué)術(shù)年會(huì)和粵海通道運(yùn)營管理學(xué)術(shù)研討會(huì)論文集[C];2005年
3 楊積忠;左立建;;滾動(dòng)軸承故障診斷實(shí)例[A];設(shè)備監(jiān)測(cè)與診斷技術(shù)及其應(yīng)用——第十二屆全國設(shè)備監(jiān)測(cè)與診斷學(xué)術(shù)會(huì)議論文集[C];2005年
4 何斌;戚佳杰;;小波分析在滾動(dòng)軸承故障診斷中的應(yīng)用研究[A];第九屆全國振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2007年
5 李放寧;;峰值能量在滾動(dòng)軸承故障診斷中的應(yīng)用[A];第十屆全國設(shè)備監(jiān)測(cè)與診斷技術(shù)學(xué)術(shù)會(huì)議論文集[C];2000年
6 何斌;戚佳杰;;小波分析在滾動(dòng)軸承故障診斷中的應(yīng)用研究[A];第九屆全國振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
7 張九軍;;常見滾動(dòng)軸承故障的簡易診斷[A];2008年全國煉鐵生產(chǎn)技術(shù)會(huì)議暨煉鐵年會(huì)文集(上冊(cè))[C];2008年
8 李興林;;滾動(dòng)軸承故障診斷技術(shù)現(xiàn)狀及發(fā)展[A];2009年全國青年摩擦學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年
9 唐海峰;陳進(jìn);董廣明;;信號(hào)稀疏分解方法在滾動(dòng)軸承故障診斷中的應(yīng)用[A];第十二屆全國設(shè)備故障診斷學(xué)術(shù)會(huì)議論文集[C];2010年
10 高耀智;;高階統(tǒng)計(jì)量與小波分析相結(jié)合在滾動(dòng)軸承故障診斷中的應(yīng)用[A];2009年全國青年摩擦學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 郝騰飛;航空發(fā)動(dòng)機(jī)滾動(dòng)軸承故障的核方法智能識(shí)別技術(shù)研究[D];南京航空航天大學(xué);2014年
2 廖強(qiáng);約束獨(dú)立分量和多小波分析在滾動(dòng)軸承故障診斷中的應(yīng)用[D];電子科技大學(xué);2016年
3 曾鳴;基于凸包的模式識(shí)別方法及其在滾動(dòng)軸承故障診斷中的應(yīng)用[D];湖南大學(xué);2016年
4 于江林;滾動(dòng)軸承故障的非接觸聲學(xué)檢測(cè)信號(hào)特性及重構(gòu)技術(shù)研究[D];大慶石油學(xué)院;2009年
5 楊柳松;基于小波分析與神經(jīng)網(wǎng)絡(luò)滾動(dòng)軸承故障診斷方法的研究[D];東北林業(yè)大學(xué);2013年
6 從飛云;基于滑移向量序列奇異值分解的滾動(dòng)軸承故障診斷研究[D];上海交通大學(xué);2012年
7 趙協(xié)廣;基于小波變換和經(jīng)驗(yàn)?zāi)B(tài)分解的滾動(dòng)軸承故障診斷方法研究[D];山東科技大學(xué);2009年
8 侯者非;強(qiáng)噪聲背景下滾動(dòng)軸承故障診斷的關(guān)鍵技術(shù)研究[D];武漢理工大學(xué);2010年
9 郭艷平;面向風(fēng)力發(fā)電機(jī)組齒輪箱滾動(dòng)軸承故障診斷的理論與方法研究[D];浙江大學(xué);2012年
10 孟濤;齒輪與滾動(dòng)軸承故障的振動(dòng)分析與診斷[D];西北工業(yè)大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 李男;基于LMD樣本熵和貝葉斯網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法[D];燕山大學(xué);2015年
2 李玉奎;基于非平穩(wěn)信號(hào)分析的滾動(dòng)軸承故障診斷研究[D];燕山大學(xué);2015年
3 卜勇霞;基于時(shí)頻分析方法的滾動(dòng)軸承故障診斷研究[D];昆明理工大學(xué);2015年
4 馬寶;基于KICA和LSSVM的滾動(dòng)軸承故障監(jiān)測(cè)及診斷方法[D];昆明理工大學(xué);2015年
5 馮春生;基于多源不確定信息融合的數(shù)控機(jī)床滾動(dòng)軸承故障診斷方法與實(shí)驗(yàn)研究[D];青島理工大學(xué);2015年
6 王天一;基于正交小波優(yōu)化閾值降噪方法的滾動(dòng)軸承故障診斷研究[D];哈爾濱工業(yè)大學(xué);2015年
7 宋耀文;基于振動(dòng)信號(hào)分析的滾動(dòng)軸承故障特征提取與診斷研究[D];中國礦業(yè)大學(xué);2015年
8 韓一村;基于多傳感器的滾動(dòng)軸承故障檢測(cè)研究[D];河南科技大學(xué);2015年
9 王秀娟;基于LMD的譜峭度算法在滾動(dòng)軸承故障診斷中的應(yīng)用研究[D];電子科技大學(xué);2014年
10 段永強(qiáng);局部均值分解法在滾動(dòng)軸承故障自動(dòng)診斷中的應(yīng)用研究[D];電子科技大學(xué);2015年
,本文編號(hào):1429042
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1429042.html