永磁耦合傳動系統(tǒng)性能分析及測試
本文關鍵詞:永磁耦合傳動系統(tǒng)性能分析及測試 出處:《沈陽工業(yè)大學》2017年碩士論文 論文類型:學位論文
更多相關文章: 圓筒型 永磁耦合器 結構優(yōu)化 有限元軟件 測試
【摘要】:自永磁傳動技術迅速發(fā)展以來,永磁耦合器作為磁傳動技術的主要儀器而被廣泛地應用于機械、石化等行業(yè)中。本文研究的是圓筒型永磁耦合器,它不僅具備磁能利用率高、空載啟動、無軸向力等優(yōu)勢,還通過主、從動轉子之間的耦合作用來實現(xiàn)非物理性連接傳動,從而解決了傳統(tǒng)機械連接導致的密封、運輸介質(zhì)等問題,并能達到節(jié)能、環(huán)保的效果。隨著國家可持續(xù)發(fā)展戰(zhàn)略目標的深入,節(jié)約能源刻不容緩,因此,對永磁耦合器的性能分析就更加重要。本文利用Ansoft有限元軟件對圓筒型永磁耦合器進行三維建模,并進行模型材料賦予、邊界條件施加等設置,然后分析了不同結構參數(shù)對傳遞轉矩、渦流損耗、平均磁密以及磁感應強度的影響。結果表明:當不同結構參數(shù)改變時,磁感應強度的變化趨勢幾乎與轉矩相同;當其他參數(shù)不變時,轉速差越大,傳遞轉矩先增大后減小并在500rpm取得最大值,渦流損耗也始終增加;當轉速差不變時,轉矩、渦流損耗和平均磁密隨著導體厚度、永磁體磁極數(shù)的增加呈現(xiàn)先增大后減小的趨勢;當僅增大永磁體厚度時,轉矩、渦流損耗和平均磁密呈先增加后平穩(wěn)趨勢;當僅增大氣隙厚度時,三者呈減小趨勢;另外,耦合面積越大,則耦合作用越明顯,從而使轉矩、渦流損耗以及平均磁密都不斷增加。同時,根據(jù)軟件仿真結果進行圓筒型永磁耦合器的結構優(yōu)化并得出:該圓筒型永磁耦合器的最佳結構為磁極數(shù)12極,導體厚度5mm,永磁體厚度25mm,氣隙厚度4mm,永磁體軸向長度30mm。然后對最優(yōu)結構下的永磁耦合器進行建模和有限元分析,得到傳遞轉矩值、渦流損耗值以及磁感應強度分布場圖。最后,結合永磁耦合器工作特性,選取合理恰當?shù)呐ぞ販y量方法進行動態(tài)性能試驗平臺搭建,對最佳結構的圓筒型永磁耦合器在不同耦合面積、轉速差之下的傳遞轉矩值進行測定,并與有限元計算結果相對比,分析性能試驗與軟件模擬的關系,從而得出:有限元軟件可以作為永磁耦合器分析的有效工具,其仿真結果與試驗相同,誤差較小。
[Abstract]:Since the rapid development of permanent magnetic transmission technology, permanent magnet coupler, as the main instrument of magnetic transmission technology, has been widely used in mechanical, petrochemical and other industries. It not only has the advantages of high utilization ratio of magnetic energy, no-load start, no axial force, but also realizes non-physical connection transmission by coupling between main and follower rotor, thus solving the seal caused by traditional mechanical connection. Transportation medium and other issues, and can achieve the effect of energy conservation, environmental protection. With the deepening of the strategic goal of national sustainable development, energy conservation is urgent, therefore. It is more important to analyze the performance of the permanent magnet coupler. In this paper, the three-dimensional modeling of the cylindrical permanent magnet coupler is carried out by using the Ansoft finite element software, and the model material is given and the boundary conditions are applied. Then, the effects of different structure parameters on transfer torque, eddy current loss, average magnetic density and magnetic induction intensity are analyzed. The variation trend of magnetic induction intensity is almost the same as that of torque. When the other parameters are not changed, the greater the speed difference, the higher the transfer torque first increases and then decreases and reaches the maximum value at 500rpm, and the eddy current loss increases all the time. When the rotational speed difference is constant, the torque, eddy current loss and average magnetic density increase with the thickness of conductor and the number of permanent magnets increases first and then decreases. When the thickness of permanent magnet is increased only, the torque, eddy current loss and average magnetic density increase first and then steady. When the thickness of the air gap is increased only, the three show a decreasing trend. In addition, the larger the coupling area, the more obvious the coupling effect is, thus increasing the torque, eddy current loss and average magnetic density. According to the simulation results, the structure of the cylindrical permanent magnet coupler is optimized. The optimum structure of the cylindrical permanent magnet coupler is that the magnetic pole number is 12 poles, the conductor thickness is 5 mm, and the permanent magnet thickness is 25 mm. The thickness of air gap is 4mm and the axial length of permanent magnet is 30mm. then the permanent magnet coupler with optimal structure is modeled and analyzed by finite element method, and the transfer torque is obtained. The eddy current loss and magnetic induction intensity distribution field diagram. Finally, combined with the characteristics of permanent magnet coupler, select a reasonable and appropriate torque measurement method to build a dynamic performance test platform. The transmission torque value of the cylindrical permanent magnet coupler with the best structure under different coupling areas and rotational speed difference is measured and compared with the finite element calculation results. The relationship between the performance test and the software simulation is analyzed. It is concluded that the finite element software can be used as an effective tool for the analysis of permanent magnet couplers. The simulation results are the same as those of the experiments, and the error is small.
【學位授予單位】:沈陽工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH139
【參考文獻】
相關期刊論文 前10條
1 賀運初;潘樹林;王滿;;永磁調(diào)速器在泵與風機節(jié)能中的應用[J];電站輔機;2015年04期
2 方軍;陶紅艷;余成波;;基于Ansoft的圓筒式永磁調(diào)速器傳動特性影響因素分析[J];重慶理工大學學報(自然科學);2015年12期
3 章振周;邱建忠;;兩極工作式永磁耦合調(diào)速器的研究與開發(fā)[J];制造業(yè)自動化;2014年12期
4 劉廷安;;一種全新永磁傳動技術[J];礦業(yè)裝備;2014年01期
5 盧永;;永磁調(diào)速在機泵節(jié)能改造的應用[J];石油石化節(jié)能;2013年10期
6 敖暉;鄭乃清;;基于ANSOFT的永磁同步電機電磁場分析[J];寧德師范學院學報(自然科學版);2013年03期
7 劉榮明;;中國稀土永磁產(chǎn)業(yè)現(xiàn)狀及技術發(fā)展新動向[J];新材料產(chǎn)業(yè);2013年01期
8 陳紅;;基于An soft Maxwell 3D的電磁場分析與計算[J];寧波大學學報(理工版);2012年04期
9 李響;;永磁式調(diào)速器在鼓、引風機上的應用及節(jié)能分析[J];電世界;2012年06期
10 孫亮;劉松林;;關于磁力機械驅動技術的初步研究[J];電子世界;2012年04期
相關博士學位論文 前1條
1 王旭;永磁調(diào)速器磁路設計與建模分析技術的研究[D];東北大學;2013年
相關碩士學位論文 前10條
1 吉城龍;調(diào)速型筒式異步磁力耦合器傳動性能與調(diào)速性能研究[D];江蘇大學;2016年
2 呂沫;聚磁式永磁渦流耦合器的性能分析和測試[D];沈陽工業(yè)大學;2016年
3 高鑫;磁力耦合器傳動性能的分析與研究[D];大連海事大學;2016年
4 馮勇;電動汽車用新型變速器的設計與研究[D];廣東工業(yè)大學;2015年
5 李存賀;磁力耦合器特性研究及試驗平臺設計[D];大連海事大學;2014年
6 李雅楠;筒形永磁調(diào)速器工作特性分析[D];河北工業(yè)大學;2015年
7 石運卓;籠型轉子異步磁力耦合器勵磁系統(tǒng)結構分析及參數(shù)優(yōu)化[D];大連交通大學;2013年
8 牛曉博;基于ANSYS的永磁調(diào)速器磁場研究[D];長安大學;2012年
9 王金博;永磁調(diào)速器建模與優(yōu)化設計研究[D];東北大學;2011年
10 張宏剛;永磁磁力耦合器損耗的計算與分析[D];吉林大學;2008年
,本文編號:1423001
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1423001.html