天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于文本分析的在線評論質(zhì)量評價模型研究

發(fā)布時間:2018-03-10 07:34

  本文選題:在線評論 切入點:文本分析 出處:《內(nèi)蒙古大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:隨著網(wǎng)絡(luò)購物市場的快速發(fā)展以及相關(guān)購物平臺與應(yīng)用的多樣性與便捷性,網(wǎng)上購物給人們的生活帶來極大的便利,越來越多的人開始接受與選擇這種生活方式。但由于網(wǎng)絡(luò)商品的虛擬性和不可觸摸性,人們無法提前感知欲購產(chǎn)品的質(zhì)量,于是很多人都傾向于依賴商品的在線評論而做出購買決定。該情形又滋生了一些無良商家通過"好評返現(xiàn)"等各種手段制造出大量商品評論,這不但增加了消費(fèi)者篩選評論的時間成本,也可能會造成不必要的經(jīng)濟(jì)損失。因此,如何快速地識別高質(zhì)量的在線評論成為當(dāng)前在線評論內(nèi)容研究的新課題。本研究從在線評論內(nèi)容出發(fā),首先提取影響在線評論質(zhì)量的特征指標(biāo),然后構(gòu)建在線評論質(zhì)量評價指標(biāo)體系與模型,最后驗證模型性能。具體內(nèi)容包括如下五個部分:(1)評論文本的有效性標(biāo)注。通過改進(jìn)基于長度的自動標(biāo)注算法和K-means算法,提出Lk-means算法對評論文本進(jìn)行有效性標(biāo)注,提取有效性這一指標(biāo);(2)指標(biāo)提取。將在線評論數(shù)據(jù)分為數(shù)值型和文本型兩類,二者結(jié)合可獲得完整性指標(biāo);并從數(shù)值型評論中提取評分?jǐn)?shù)據(jù),從文本型評論中提取信息量、可讀性、主題相關(guān)度和一致性這四個指標(biāo)。(3)構(gòu)建在線評論質(zhì)量評價指標(biāo)體系。根據(jù)改進(jìn)信息質(zhì)量評價的WRC指標(biāo)和研究中發(fā)現(xiàn)的數(shù)據(jù)質(zhì)量評價的1R3C指標(biāo),提出本研究的1W2R3C評價指標(biāo)體系:(4)建立在線評論質(zhì)量評價模型。首先根據(jù)獲得的評價指標(biāo)建立在線評論質(zhì)量評價模型,然后將評論數(shù)據(jù)分為訓(xùn)練集和測試集,并利用訓(xùn)練集獲得模型中的各評價指標(biāo)權(quán)重和利用測試集驗證模型性能。(5)模型性能驗證。對模型的性能驗證將從兩方面進(jìn)行:一是利用本文提出的1W2R3C指標(biāo)體系,和WRC與1R3C指標(biāo),分別建模進(jìn)行對比分析;二是基于本文模型訓(xùn)練的指標(biāo)權(quán)重,引入專家打分法和灰色關(guān)聯(lián)度修正法分別獲得指標(biāo)權(quán)重,然后進(jìn)行建模對比分析,由此充分驗證模型的優(yōu)良性能。本文關(guān)于在線評論質(zhì)量評價模型的研究結(jié)果,可為深入研究在線評論內(nèi)容提供一些新的方法和理論依據(jù);用于實踐后也可為廣大消費(fèi)者提供相應(yīng)的決策支持。
[Abstract]:With the rapid development of online shopping market and the variety and convenience of related shopping platforms and applications, online shopping brings great convenience to people's life. More and more people are beginning to accept and choose this way of life. However, because of the virtual and non-touchable nature of online goods, people cannot perceive the quality of products they want to buy in advance. As a result, many people tend to rely on online reviews of goods and make purchase decisions. This has led some unscrupulous businesses to create a large number of reviews through various means, such as "positive reviews". This not only increases the time cost of consumers screening comments, but also may cause unnecessary economic losses. How to quickly identify high quality online reviews has become a new topic in the research of online review content. Based on the content of online comments, this study firstly extracts the characteristic indexes that affect the quality of online reviews. Then the evaluation index system and model of online comment quality are constructed, and the performance of the model is verified. The specific content includes the following five parts: 1) the validity of comment text. By improving the length based automatic tagging algorithm and K-means algorithm, Lk-means algorithm is proposed to annotate the validity of comment text and extract the index of validity. The online comment data can be divided into two categories: numerical and text-type. The integrity index can be obtained by combining the two methods. And extract the score data from the numerical comments, and extract the amount of information from the text comments, readability, According to the WRC index of improving information quality evaluation and the 1R3C index of data quality evaluation found in the research, In this paper, the evaluation index system of 1W2R3C is proposed to establish the online comment quality evaluation model. Firstly, the online comment quality evaluation model is established according to the obtained evaluation index, and then the comment data is divided into training set and test set. The weight of each evaluation index in the model is obtained by using the training set and the model performance is verified by the test set. The performance verification of the model will be carried out from two aspects: one is using the 1W2R3C index system proposed in this paper, and the other is the WRC and 1R3C index. Secondly, based on the index weight of the model training in this paper, the expert scoring method and the grey correlation degree correction method are introduced to obtain the index weight respectively, and then the model is compared and analyzed. The results of this paper can provide some new methods and theoretical basis for further research on online comment content. After being used in practice, it can also provide corresponding decision support for consumers.
【學(xué)位授予單位】:內(nèi)蒙古大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F724.6;F274;F713.55

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 唐曉波;邱鑫;;面向主題的高質(zhì)量評論挖掘模型研究[J];現(xiàn)代圖書情報技術(shù);2015年Z1期

2 夏火松;楊培;熊淦;;基于特征提取改進(jìn)的在線評論有效性分類模型[J];情報學(xué)報;2015年05期

3 吳含前;朱云杰;謝玨;;基于邏輯回歸的中文在線評論有效性檢測模型[J];東南大學(xué)學(xué)報(自然科學(xué)版);2015年03期

4 王倩倩;;一種在線商品評論信息可信度的排序方法[J];情報雜志;2015年03期

5 聶卉;;基于內(nèi)容分析的用戶評論質(zhì)量的評價與預(yù)測[J];圖書情報工作;2014年13期

6 靳健;季平;;用于在線產(chǎn)品評論質(zhì)量分析的Co-training算法[J];上海大學(xué)學(xué)報(自然科學(xué)版);2014年03期

7 陳濤;謝麗莎;;在線評論文本信息質(zhì)量等級的測量探析——基于模糊綜合評價法[J];科技創(chuàng)業(yè)月刊;2012年07期

8 吳秋琴;許元科;梁佳聚;張蕾;;互聯(lián)網(wǎng)背景下在線評論質(zhì)量與網(wǎng)站形象的影響研究[J];科學(xué)管理研究;2012年01期

9 于萍;李克;;使用Microsoft Excel進(jìn)行數(shù)據(jù)的灰關(guān)聯(lián)分析[J];微型電腦應(yīng)用;2011年03期

10 張靖;金浩;;漢語詞語情感傾向自動判斷研究[J];計算機(jī)工程;2010年23期

相關(guān)博士學(xué)位論文 前1條

1 王素格;基于Web的評論文本情感分類問題研究[D];上海大學(xué);2008年

相關(guān)碩士學(xué)位論文 前3條

1 徐嘉徽;電子商務(wù)用戶在線評論信息質(zhì)量研究[D];吉林大學(xué);2016年

2 楊培;基于改進(jìn)特征提取的評論有效性分類模型[D];武漢紡織大學(xué);2015年

3 宋惟然;中文文本分類中的特征選擇和權(quán)重計算方法研究[D];北京工業(yè)大學(xué);2013年



本文編號:1592354

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/xmjj/1592354.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶060ac***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com