基于GIS和BP的原州區(qū)空間貧困及其分異機(jī)制研究
本文關(guān)鍵詞: 空間貧困 GIS BP神經(jīng)網(wǎng)絡(luò) 分異機(jī)制 出處:《寧夏大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:貧困是困惑人類發(fā)展的全球性難題,也是發(fā)展中國(guó)家實(shí)現(xiàn)可持續(xù)發(fā)展所面臨的嚴(yán)重挑戰(zhàn)之一,而貧困地區(qū)的發(fā)展是我國(guó)現(xiàn)階段全面建設(shè)小康社會(huì)進(jìn)程中十分重要和緊迫的問題。 寧夏回族自治區(qū)是西部少數(shù)民族自治區(qū),貧困地區(qū)主要分布在中部干旱帶和南部山區(qū)(即寧夏六盤山集中連片特殊困難地區(qū)),該地區(qū)生態(tài)脆弱,土地瘠薄,常年干旱少雨,自然災(zāi)害頻繁,水土流失嚴(yán)重,且人口、資源、環(huán)境三者嚴(yán)重失衡,同時(shí)又受到社會(huì)、經(jīng)濟(jì)、歷史等方面的制約,為貧困地區(qū)的發(fā)展和新階段的扶貧開發(fā)帶來了前所未有壓力。 文章以空間貧困及其相關(guān)理論為基礎(chǔ),以原州區(qū)為研究對(duì)象,以行政村為基本單元,從自然、社會(huì)和經(jīng)濟(jì)三個(gè)方面,構(gòu)建出一個(gè)包含有30個(gè)指標(biāo)的空間貧困因素指標(biāo)體系,選取2010到2013年四年的動(dòng)態(tài)數(shù)據(jù)。首先采用Pearson相關(guān)分析進(jìn)行致貧因素和消貧因素的區(qū)分,接著利用OLS回歸分析對(duì)各因素對(duì)貧困的影響程度進(jìn)行量化,并且結(jié)合GIS和BP神經(jīng)網(wǎng)絡(luò),對(duì)原州區(qū)各地理資本指數(shù)進(jìn)行模擬分析,計(jì)算出各空間貧困指數(shù),并且利用GIS的可視化特點(diǎn)在圖上展示出其空間分布,揭示原州區(qū)空間貧困格局及其分異機(jī)制,為原州區(qū)的扶貧開發(fā)提供科學(xué)可靠的理論依據(jù),最終得到如下結(jié)論: (1)經(jīng)過Pearson相關(guān)分析以及OLS回歸分析,得出如下結(jié)論: Pearson相關(guān)分析得出,自然環(huán)境是影響原州區(qū)貧困的最主要因素,與此同時(shí),社會(huì)環(huán)境加劇了這種貧困的發(fā)生;經(jīng)濟(jì)環(huán)境則是緩解和消除區(qū)域貧困的主要因素,結(jié)合OLS回歸估計(jì)分析,進(jìn)一步量化每個(gè)因素對(duì)貧困的影響度。 (2)通過GIS的空間表達(dá)和基于BP的空間模擬得出如下結(jié)果: 自然致貧指數(shù)較高的村子主要分布在東北部和北部地區(qū),社會(huì)致貧指數(shù)較大的村子主要分布在西南部,經(jīng)濟(jì)消貧指數(shù)沒有明顯的分布特征,但總體呈上升趨勢(shì)。 結(jié)合之前的分析和研究,最后提出符合原州區(qū)區(qū)域特色的扶貧對(duì)策及建議: (1)在自然致貧指數(shù)高的地區(qū)要加強(qiáng)環(huán)境保護(hù)和水土流失治理,同時(shí)要加強(qiáng)生態(tài)環(huán)境建設(shè)和污染物的治理,以及基本農(nóng)田和飲水安全的建設(shè)。 (2)在社會(huì)環(huán)境調(diào)控中,實(shí)施生態(tài)移民扶貧工程,對(duì)于社會(huì)致貧指數(shù)較高的地區(qū),要提高基礎(chǔ)教育的水平,大力培養(yǎng)貧困人口的就業(yè)技能;同時(shí)也要加快醫(yī)療事業(yè)的發(fā)展和公共信息文化信息以及交通網(wǎng)絡(luò)的建設(shè)。 (3)原州區(qū)作為寧夏南部重點(diǎn)開發(fā)區(qū),要切實(shí)實(shí)施區(qū)域中心城市暨大縣城戰(zhàn)略。對(duì)于經(jīng)濟(jì)消貧指數(shù)較低的地區(qū),要整體加強(qiáng)科技培訓(xùn)和推廣的力度,并發(fā)展農(nóng)業(yè)優(yōu)勢(shì)特色產(chǎn)業(yè)。
[Abstract]:Poverty is a global problem puzzling human development, and it is also one of the serious challenges for developing countries to realize sustainable development. However, the development of poverty-stricken areas is an important and urgent problem in the process of building a well-off society in an all-round way in our country at the present stage. The Ningxia Hui Autonomous region is a western ethnic minority autonomous region, and the poverty-stricken areas are mainly distributed in the central arid zone and the southern mountainous areas (that is, Ningxia Liupanshan concentrated and connected with special difficulties). The region is ecologically fragile, the land is barren, the perennial drought is low, and there is little rain. The frequent natural disasters, serious soil and water loss, and the imbalance of population, resources and environment, which are restricted by social, economic and historical aspects, have brought unprecedented pressure to the development of poverty-stricken areas and the development of poverty alleviation in the new stage. Based on spatial poverty and its related theories, taking Yuanzhou district as the research object and administrative village as the basic unit, this paper constructs an index system of spatial poverty factors including 30 indicators from the three aspects of nature, society and economy. The dynamic data of four years from 2010 to 2013 were selected. Firstly, Pearson correlation analysis was used to distinguish the poverty factors from the anti-poverty factors, and then the degree of influence of each factor on poverty was quantified by OLS regression analysis, and combined with GIS and BP neural network. Based on the simulation and analysis of the capital index in various parts of Yuanzhou district, the spatial poverty index is calculated, and the spatial distribution of the spatial poverty index is shown by using the visualization characteristics of GIS, which reveals the spatial poverty pattern and its differentiation mechanism in Yuanzhou district. To provide a scientific and reliable theoretical basis for poverty alleviation and development in Yuanzhou District, and finally get the following conclusions:. 1) by Pearson correlation analysis and OLS regression analysis, the conclusions are as follows:. Pearson correlation analysis shows that the natural environment is the most important factor affecting poverty in Yuanzhou district, and at the same time, the social environment exacerbates the occurrence of poverty, while the economic environment is the main factor to alleviate and eliminate regional poverty. Combined with OLS regression analysis, the impact of each factor on poverty is further quantified. 2) through the spatial expression of GIS and the spatial simulation based on BP, the following results are obtained:. The villages with higher natural poverty index are mainly distributed in the northeast and northern regions, while the villages with higher social poverty index are mainly distributed in the southwest. The economic poverty eradication index has no obvious distribution characteristics, but the overall trend is on the rise. Combining with the previous analysis and research, the paper puts forward some countermeasures and suggestions for poverty alleviation in accordance with the regional characteristics of Yuanzhou District. 1) in areas with high natural poverty index, environmental protection and soil erosion control should be strengthened, and ecological environment construction and pollutant management, as well as the construction of basic farmland and drinking water safety should be strengthened. 2) in the social environment regulation and control, the implementation of the ecological migration poverty alleviation project, for areas with high social poverty index, it is necessary to improve the level of basic education, and vigorously develop the poor people's employment skills; At the same time, it is necessary to speed up the development of medical services and the construction of public information, cultural information and transportation networks. 3) as the key development zone of southern Ningxia, Yuanzhou district should implement the strategy of regional central city and big county city. For the region with low economic poverty eradication index, it is necessary to strengthen the training and popularization of science and technology as a whole, and to develop agricultural advantages and characteristic industries.
【學(xué)位授予單位】:寧夏大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP183;F126
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳志新;楊巧紅;;寧夏南部山區(qū)反貧困的實(shí)踐與啟示[J];安徽農(nóng)業(yè)科學(xué);2007年11期
2 許月卿;李雙成;蔡運(yùn)龍;;基于GIS和人工神經(jīng)網(wǎng)絡(luò)的區(qū)域貧困化空間模擬分析——以貴州省貓?zhí)恿饔驗(yàn)槔齕J];地理科學(xué)進(jìn)展;2006年03期
3 陳果,顧朝林,吳縛龍;南京城市貧困空間調(diào)查與分析[J];地理科學(xué);2004年05期
4 袁媛;許學(xué)強(qiáng);;轉(zhuǎn)型時(shí)期中國(guó)城市貧困地理的實(shí)證研究——以廣州市為例[J];地理科學(xué);2008年04期
5 何深靜;劉玉亭;吳縛龍;Chris Webster;;中國(guó)大城市低收入鄰里及其居民的貧困集聚度和貧困決定因素[J];地理學(xué)報(bào);2010年12期
6 樊杰,楊曉光;扶持我國(guó)落后地區(qū)經(jīng)濟(jì)發(fā)展的新觀念——以西部開發(fā)戰(zhàn)略為重點(diǎn)[J];地理研究;2000年01期
7 董鎖成,吳玉萍,王海英;黃土高原生態(tài)脆弱貧困區(qū)生態(tài)經(jīng)濟(jì)發(fā)展模式研究——以甘肅省定西地區(qū)為例[J];地理研究;2003年05期
8 何深靜;劉玉亭;吳縛龍;;南京市不同社會(huì)群體的貧困集聚度、貧困特征及其決定因素[J];地理研究;2010年04期
9 李雙成,鄭度;人工神經(jīng)網(wǎng)絡(luò)模型在地學(xué)研究中的應(yīng)用進(jìn)展[J];地球科學(xué)進(jìn)展;2003年01期
10 王慶林;賈敬;;貧困與反貧困的社會(huì)學(xué)分析——基于布迪厄的實(shí)踐社會(huì)學(xué)[J];法制與社會(huì);2008年20期
,本文編號(hào):1494683
本文鏈接:http://sikaile.net/jingjilunwen/shijiejingjilunwen/1494683.html