基于BP神經(jīng)網(wǎng)絡(luò)的開(kāi)采沉陷預(yù)計(jì)參數(shù)求取
[Abstract]:The mining of coal resources leads to surface movement and deformation, which may lead to surface collapse, cracks and other disasters. It seriously affects the safe production of mining area and the normal life of the surrounding residents, and poses a great threat to the development of regional economy. Therefore, the prediction model of mining subsidence is of great significance to determine the range and shape variables of surface subsidence. Based on the measured data of Anyang mining area and the measured data collected from many mining areas in China, this paper analyzes the measured data and obtains the predicted results. At the same time, the parameters of probability integration method in Anyang mining area are predicted. The main contents of this paper are as follows: (1) based on the prediction of mining subsidence, the probability integration method is selected in this paper. The relationship between the predicted parameters of the probabilistic integration method and the geological and mining conditions is introduced, which lays a foundation for the paper. As the probability integration method is the most widely used method for predicting subsidence in mining area, the precision of prediction parameters of probability integration method determines the accuracy of surface subsidence prediction. (2) in order to reduce the error of experimental data to the network, Use Origin8.0 to smooth the raw data. Then, the influence of different selection ways of experimental data on the predicted results is analyzed. (3) the BP neural network model is introduced, and the parameters are predicted, and the accuracy of the predicted results is analyzed. Then genetic algorithm is used to optimize the BP neural network. The optimized network predicts the parameters and analyzes its accuracy. Comparing the accuracy of the two kinds of prediction results and analyzing the causes of the error caused by the difference of the results. (4) according to the measured data of Anyang mining area, using genetic algorithm to optimize the BP neural network, the parameters of the probability integration method in Anyang mining area are forecasted. Then compared with the actual parameters of Anyang mining area, draw a conclusion.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TD327;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張靜;;神經(jīng)網(wǎng)絡(luò)在智能信息處理技術(shù)中的應(yīng)用研究[J];科技展望;2015年24期
2 胡加斌;;巷道頂板淋水研究與治理[J];能源與節(jié)能;2015年07期
3 張光建;;模式識(shí)別中的感知器網(wǎng)絡(luò)權(quán)值計(jì)算與MATLAB仿真[J];智能計(jì)算機(jī)與應(yīng)用;2015年03期
4 朱忠華;王李管;畢林;鐘德云;;基于VTK的地下礦開(kāi)采沉陷預(yù)計(jì)研究與實(shí)現(xiàn)[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期
5 張豪杰;查劍鋒;李懷展;;概率積分法參數(shù)影響因素分析與研究展望[J];煤炭技術(shù);2015年04期
6 胡小玲;;工礦區(qū)與高層建筑物沉降監(jiān)測(cè)數(shù)據(jù)分析系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];中外企業(yè)家;2013年21期
7 郝秀蘭;杜煜;蘇利敏;;Matlab在通信原理課程教學(xué)中的應(yīng)用[J];計(jì)算機(jī)科學(xué);2012年S2期
8 秦瑩;;采礦誘發(fā)地質(zhì)災(zāi)害風(fēng)險(xiǎn)研究現(xiàn)狀及其發(fā)展[J];煤炭技術(shù);2012年01期
9 樊振宇;;BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法[J];軟件導(dǎo)刊;2011年07期
10 夏青青;安鵬宇;賀躍光;吳盛才;;基于灰色理論的礦區(qū)地表沉降預(yù)測(cè)[J];交通科學(xué)與工程;2010年03期
相關(guān)碩士學(xué)位論文 前10條
1 張杰;基于ArcEngine建筑物保護(hù)煤柱留設(shè)自動(dòng)化及三維可視化研究[D];安徽理工大學(xué);2016年
2 李俊芳;基于AE的陽(yáng)煤礦區(qū)地面沉陷災(zāi)害數(shù)據(jù)庫(kù)的建立及應(yīng)用[D];太原理工大學(xué);2014年
3 袁博;復(fù)合巖層條件下保護(hù)煤柱合理尺寸研究與應(yīng)用[D];太原理工大學(xué);2014年
4 張靜;采空區(qū)地表移動(dòng)變形分析與評(píng)價(jià)[D];長(zhǎng)安大學(xué);2013年
5 趙麗;巨厚松散層下地表移動(dòng)參數(shù)解算與移動(dòng)變形預(yù)計(jì)[D];安徽理工大學(xué);2013年
6 朱錕;基于概率積分法與VB語(yǔ)言的采空區(qū)地表移動(dòng)變形預(yù)測(cè)系統(tǒng)研究[D];長(zhǎng)安大學(xué);2013年
7 洪興;淺埋煤層開(kāi)采引起的地表移動(dòng)規(guī)律研究[D];西安科技大學(xué);2012年
8 曹虹;基于BP神經(jīng)網(wǎng)絡(luò)的交通流量預(yù)測(cè)[D];長(zhǎng)安大學(xué);2012年
9 楊新佳;基于神經(jīng)網(wǎng)絡(luò)的教學(xué)質(zhì)量評(píng)價(jià)模型研究[D];西安科技大學(xué);2011年
10 代巨鵬;西北厚松散層礦區(qū)開(kāi)采沉陷預(yù)計(jì)與可視化研究[D];西安科技大學(xué);2011年
,本文編號(hào):2286194
本文鏈接:http://sikaile.net/jingjilunwen/quyujingjilunwen/2286194.html