基于BP神經(jīng)網(wǎng)絡(luò)的太白山生態(tài)旅游研究
本文選題:旅游需求 + 神經(jīng)網(wǎng)絡(luò); 參考:《西北農(nóng)林科技大學(xué)》2013年碩士論文
【摘要】:旅游市場(chǎng)需求預(yù)測(cè)常見(jiàn)的方法有:時(shí)間序列預(yù)測(cè)法和因果模型預(yù)測(cè)法。然而旅游市場(chǎng)往往受到許多因素的影響,這些因素之間關(guān)系錯(cuò)綜復(fù)雜,而且有很多不可預(yù)知的因素,常見(jiàn)的方法難以得到可靠的預(yù)測(cè)結(jié)果。 人工神經(jīng)網(wǎng)絡(luò)是模擬大腦的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能的數(shù)學(xué)模型,它是由大量處理單元組成的自適應(yīng)動(dòng)態(tài)系統(tǒng),用來(lái)處理數(shù)據(jù)樣本中的非線性關(guān)系,具有良好的自適應(yīng)性、自組織及很強(qiáng)的學(xué)習(xí)、容錯(cuò)和抗干擾能力,可以對(duì)復(fù)雜系統(tǒng)進(jìn)行靈活方便的建模,使得它在實(shí)際應(yīng)用中成為一種很好的分類和預(yù)測(cè)工具。一般來(lái)說(shuō),旅游市場(chǎng)是受到許多不可預(yù)知因素的影響,所以在進(jìn)行旅游市場(chǎng)需求預(yù)測(cè)時(shí)用神經(jīng)網(wǎng)絡(luò)模型分析是比較優(yōu)越的。本文分析、研究了人工神經(jīng)網(wǎng)絡(luò)的基本理論、預(yù)測(cè)方法,對(duì)預(yù)測(cè)指標(biāo)、預(yù)測(cè)模型的選擇、建模流程和方法進(jìn)行了初步探討。 本文用BP神經(jīng)網(wǎng)絡(luò)模型對(duì)太白山自然保護(hù)區(qū)生態(tài)旅游需求進(jìn)行了預(yù)測(cè)分析。結(jié)果證實(shí)了該模型的有效性。在太白山自然保護(hù)區(qū)生態(tài)旅游需求預(yù)測(cè)中,采用2-8-1神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),預(yù)測(cè)了太白山自然保護(hù)區(qū)2011~2020年旅游人數(shù),,將實(shí)驗(yàn)數(shù)據(jù)與實(shí)際數(shù)據(jù)作對(duì)比,表明該模型有良好預(yù)測(cè)能力,網(wǎng)絡(luò)泛化能力良好。
[Abstract]:The common methods of tourism market demand prediction are: time series forecasting and causality model forecasting. However, the tourism market is often affected by many factors, these factors are intricate, and there are many unpredictable factors, common methods are difficult to obtain reliable prediction results. Artificial neural network is a mathematical model that simulates the neural network structure and function of the brain. It is an adaptive dynamic system composed of a large number of processing units, which is used to deal with nonlinear relationships in data samples and has good adaptability. Self-organization and strong learning, fault-tolerant and anti-interference ability, can be used for flexible and convenient modeling of complex systems, which makes it a good tool for classification and prediction in practical applications. Generally speaking, the tourism market is affected by many unpredictable factors, so it is better to use neural network model to forecast the demand of tourism market. In this paper, the basic theory and prediction method of artificial neural network are analyzed and studied. The prediction index, the selection of prediction model, the modeling process and method are discussed preliminarily. In this paper, the demand for ecotourism in Taibai Mountain Nature Reserve is predicted by BP neural network model. The results show that the model is effective. In the prediction of ecotourism demand in Taibai Mountain Nature Reserve, 2-8-1 neural network structure was used to predict the tourism population in Taibai Mountain Nature Reserve from 2011 to 2020. The comparison between experimental data and actual data shows that the model has good predictive ability. Network generalization ability is good.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F592.7;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李君軼;馬耀峰;楊敏;;我國(guó)旅游市場(chǎng)需求預(yù)測(cè)研究綜述[J];商業(yè)研究;2009年03期
2 李恒嵬;;模糊神經(jīng)網(wǎng)絡(luò)研究現(xiàn)狀綜述[J];遼寧科技學(xué)院學(xué)報(bào);2010年02期
3 孫根年;薛佳;;中國(guó)城鄉(xiāng)居民國(guó)內(nèi)旅游需求預(yù)測(cè)[J];城市問(wèn)題;2009年01期
4 呂連琴,王世文;黃河小浪底旅游開(kāi)發(fā)的國(guó)內(nèi)客源市場(chǎng)分析與預(yù)測(cè)[J];地域研究與開(kāi)發(fā);2000年04期
5 谷小青;易當(dāng)祥;劉春和;;遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)與權(quán)值[J];廣東工業(yè)大學(xué)學(xué)報(bào);2006年04期
6 羅清;;中國(guó)生態(tài)旅游發(fā)展前景分析[J];消費(fèi)導(dǎo)刊;2008年16期
7 殷書(shū)爐;楊立勛;;旅游需求預(yù)測(cè)方法與模型評(píng)述[J];甘肅省經(jīng)濟(jì)管理干部學(xué)院學(xué)報(bào);2008年03期
8 趙學(xué)智,鄒春華,陳統(tǒng)堅(jiān),葉邦彥,彭永紅;小波神經(jīng)網(wǎng)絡(luò)的參數(shù)初始化研究[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年02期
9 朱曉華,楊秀春,蔡運(yùn)龍;基于灰色系統(tǒng)理論的旅游客源預(yù)測(cè)模型——以中國(guó)入境旅游客源為例[J];經(jīng)濟(jì)地理;2005年02期
10 朱大奇;人工神經(jīng)網(wǎng)絡(luò)研究現(xiàn)狀及其展望[J];江南大學(xué)學(xué)報(bào);2004年01期
本文編號(hào):1827885
本文鏈接:http://sikaile.net/jingjilunwen/lyjj/1827885.html