基于時序性信息的財務報表欺詐識別
[Abstract]:This paper starts with the research results in the field of financial fraud identification, and on the basis of analyzing the insufficiency of previous research, aiming at the deficiency, deeply explores, and puts forward some more effective solutions. Specifically, three aspects of work have been done in this paper in view of the two deficiencies of previous studies. Firstly, aiming at the deficiency of the traditional financial fraud identification model which can not catch the longitudinal annual anomaly of financial index, this paper abstracts this longitudinal anomaly into a time series index and adds it to the naive Bayes classification model, which improves the classification accuracy of the model. Among them, the difference value, the ratio, the relative value form time series index which is more effective, and the time series index between different years how to weigh reasonably are studied emphatically. The conclusion of the empirical study is that the time series index in the form of ratio is more effective, and the effect is better when the weight of 0.8 is assigned to the time series index of the recent year and the weight of 0.2 is assigned to the time series index of the farther year at the same time. Secondly, from the point of view of clustering, this paper verifies the validity of the ratio time series index constructed in the classification model, and also excavates the fraud characteristic that the ratio time series index can reflect. The conclusion of the empirical study is that when the financial fraud exists, the ratio forms derived from the return on net assets and earnings per share may be abnormal. Thirdly, aiming at the inherent deficiency of the traditional fraud identification model as a supervised learning algorithm-the selection and labeling of control samples is potentially irrational and redundant, the traditional model is modified based on the partially supervised learning algorithm. The conclusion of the empirical study is that the modified model can not only eliminate the interference of unreliable control samples, but also make full use of the information contained in fraud samples to identify fraud. The optimized model also has a better performance in identifying financial fraud.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:F234.4;F224
【參考文獻】
相關期刊論文 前10條
1 蔡寧,梁麗珍;公司治理與財務舞弊關系的經驗分析[J];財經理論與實踐;2003年06期
2 劉桂良;葉寶松;周蘭;;舞弊治理:基于上市公司財務舞弊特征的分析[J];財經理論與實踐;2009年03期
3 張煜東;霍元鎧;吳樂南;董正超;;降維技術與方法綜述[J];四川兵工學報;2010年10期
4 梅國平;陳孝新;毛小兵;;基于主成分分析的企業(yè)會計信息失真預測模型[J];當代財經;2006年02期
5 程永文;;聚類分析在識別財務欺詐中的應用[J];合肥工業(yè)大學學報(自然科學版);2006年10期
6 蔡志岳;吳世農;;基于公司治理的信息披露舞弊預警研究[J];管理科學;2006年04期
7 余玉苗;呂凡;;財務舞弊風險的識別——基于財務指標增量信息的研究視角[J];經濟評論;2010年04期
8 陳信元,張?zhí)镉?陳冬華;預期股票收益的橫截面多因素分析:來自中國證券市場的經驗證據[J];金融研究;2001年06期
9 顧寧生;馮勤超;;基于LVQ神經網絡的財務舞弊識別模型實證研究[J];價值工程;2009年10期
10 耿建新 ,肖澤忠 ,續(xù)芹;報表收益與現金流量數據之間關系的實證分析——信息不實公司的預警信號[J];會計研究;2002年12期
相關博士學位論文 前2條
1 任海松;上市公司財務報告欺詐及其偵測研究[D];東北財經大學;2006年
2 鄧慶山;基于數據挖掘技術的上市公司會計信息失真識別研究[D];江西財經大學;2009年
相關碩士學位論文 前2條
1 陳凌;我國上市公司財務欺詐識別模型研究[D];中國人民大學;2005年
2 楊芳;上市公司財務欺詐識別[D];湖南大學;2006年
,本文編號:2391059
本文鏈接:http://sikaile.net/jingjilunwen/kuaiji/2391059.html