基于CCD數(shù)據(jù)的太湖藍(lán)藻水華監(jiān)測(cè)算法研究
[Abstract]:In recent years, with the rapid development of industry and agriculture in China, a large number of industrial, agricultural sewage and domestic wastewater containing nitrogen, phosphorus and other elements have been discharged into rivers and lakes, resulting in serious eutrophication of lakes in China. Especially the middle and lower reaches of the Yangtze River lakes, such as: Taihu Lake, Chaohu Lake. Every year, in summer and autumn, these lakes will break out serious cyanobacteria Shui Hua. Cyanobacteria Shui Hua directly affects human health, economic development and ecological balance. In this paper, the relative radiation correction of CCD data of different images is carried out by means of automatic control of scatter point regression (ASCR), which is based on the CCD data of the environment satellite made in China. Combining normalized vegetation index (NDVI) with pixel growth algorithm (APA), a high precision extraction algorithm for cyanobacteria Shui Hua is proposed. The algorithm is applied to the newly launched Gaofen 1 satellite and the American land Landsat satellite. Through the research of this paper, the following conclusions can be drawn: (1) the CCD image after relative radiation correction is obtained by automatic control scatter point regression method, and the correction result is satisfactory. Making the radiation values of relatively stable objects of the same name consistent in different phase images, Therefore, the dynamic changes of cyanobacteria Shui Hua in Taihu Lake were monitored by the difference of radiation values in different phase images. (2) the blue algae Shui Hua in Taihu Lake region was preliminarily extracted by using NDVI index. Then the threshold value of each scene image is ascertained by slope analysis method, and then a unified blue algae Shui Hua extraction threshold is determined by using statistical analysis method, which solves the problem of one threshold value of a scene image in the past. It is difficult to solve the problem of large-scale batch processing. (3) the pixel growth algorithm is used to decompose the pixel linearly, and the extraction precision can reach sub-pixel level. More accurate statistics on the area and distribution of cyanobacteria Shui Hua in Taihu Lake were made. (4) continuous monitoring of a long-term series of outbreaks of cyanobacteria from Lake Taihu in the second half of 2009-2014 was carried out. It is found that the outbreak area of cyanobacteria Shui Hua in Taihu Lake in 2013-2014 is smaller than that in the past, and the water quality has been controlled and improved. The results also show that the algorithm has strong recognition ability to cyanobacteria Shui Hua, high degree of automation and extraction accuracy of Shui Hua, and can be used as an algorithm for operational operation. (5) comparing with the new CCD sensor launched by China's high score 1 satellite, And the Landsat sensors of the United States, they are found to be highly correlated with the environmental satellite CCD sensors. Therefore, the algorithm is applied to the Gaofen 1 satellite data and the Landsat series data of the United States. Based on the environmental satellite CCD data, the relative radiometric correction of other image data is carried out. Finally, real-time dynamic monitoring of cyanobacteria Shui Hua in Taihu Lake with longer time series and higher time resolution is realized by using multi-satellite platform.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:X87
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 武勝利;劉誠(chéng);孫軍;李三妹;李亞軍;孔期;;衛(wèi)星遙感太湖藍(lán)藻水華分布及其氣象影響要素分析[J];氣象;2009年01期
2 王成林;潘維玉;韓月琪;錢(qián)新;;全球氣候變化對(duì)太湖藍(lán)藻水華發(fā)展演變的影響[J];中國(guó)環(huán)境科學(xué);2010年06期
3 劉聚濤;楊永生;高俊峰;姜加虎;;太湖藍(lán)藻水華分級(jí)及其時(shí)空變化[J];長(zhǎng)江流域資源與環(huán)境;2011年02期
4 馬榮華;孔繁翔;段洪濤;張壽選;孔維娟;郝景燕;;基于衛(wèi)星遙感的太湖藍(lán)藻水華時(shí)空分布規(guī)律認(rèn)識(shí)[J];湖泊科學(xué);2008年06期
5 ;太湖藍(lán)藻水華發(fā)生不可避免科學(xué)應(yīng)對(duì)無(wú)需驚慌[J];海河水利;2008年02期
6 孫偉華;劉銳;陳呂軍;張永明;;太湖藍(lán)藻水華成因及防治對(duì)策研究[J];中國(guó)建設(shè)信息(水工業(yè)市場(chǎng));2009年06期
7 王u!;江南;胡斌;魏清宇;胡顯志;;太湖藍(lán)藻水華遙感動(dòng)態(tài)監(jiān)測(cè)信息系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J];測(cè)繪科學(xué);2010年02期
8 王成林;陳黎明;潘維玉;錢(qián)新;;適宜太湖藍(lán)藻水華形成的風(fēng)場(chǎng)輻散特征及其形成機(jī)制[J];中國(guó)環(huán)境科學(xué);2010年09期
9 李旭文;牛志春;姜晟;;Landsat5 TM遙感影像上太湖藍(lán)藻水華反射光譜特征研究[J];環(huán)境監(jiān)測(cè)管理與技術(shù);2010年06期
10 劉聚濤;楊永生;姜加虎;高俊峰;;太湖藍(lán)藻水華災(zāi)害風(fēng)險(xiǎn)分區(qū)評(píng)估方法研究[J];中國(guó)環(huán)境科學(xué);2011年03期
相關(guān)會(huì)議論文 前8條
1 陳中峗;黃玲琳;;降水對(duì)太湖藍(lán)藻水華發(fā)生的影響[A];第26屆中國(guó)氣象學(xué)會(huì)年會(huì)農(nóng)業(yè)氣象防災(zāi)減災(zāi)與糧食安全分會(huì)場(chǎng)論文集[C];2009年
2 祝令亞;孫珂;王冠珠;;環(huán)境減災(zāi)衛(wèi)星在太湖藍(lán)藻水華監(jiān)測(cè)中的應(yīng)用[A];第十七屆中國(guó)遙感大會(huì)摘要集[C];2010年
3 韓秀珍;劉誠(chéng);李三妹;李亞君;武勝利;劉征;崔曉平;孫軍;孔期;宋艷玲;;衛(wèi)星遙感近年來(lái)太湖藍(lán)藻水華時(shí)空分布及變化特點(diǎn)分析[A];中國(guó)氣象學(xué)會(huì)2008年年會(huì)衛(wèi)星遙感應(yīng)用技術(shù)與處理方法分會(huì)場(chǎng)論文集[C];2008年
4 武勝利;韓秀珍;孫凌;李亞君;李三妹;趙洪淼;劉誠(chéng);朱小祥;趙長(zhǎng)海;孫涵;馬瑞升;曹云;朱瑋;錢(qián)培東;楊金彪;朱蓮芳;;基于實(shí)地光譜測(cè)量的衛(wèi)星遙感太湖藍(lán)藻水華密度估算方法[A];中國(guó)氣象學(xué)會(huì)2008年年會(huì)衛(wèi)星遙感應(yīng)用技術(shù)與處理方法分會(huì)場(chǎng)論文集[C];2008年
5 朱冰川;黃君;宋挺;吳蔚;張軍毅;;太湖藍(lán)藻水華種類(lèi)及其演替規(guī)律研究[A];2014中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第五章)[C];2014年
6 周全;陳偉;萬(wàn)能;宋立榮;;太湖藍(lán)藻水華早期暴發(fā)特性及監(jiān)測(cè)指標(biāo)[A];中國(guó)藻類(lèi)學(xué)會(huì)第八次會(huì)員代表大會(huì)暨第十六次學(xué)術(shù)討論會(huì)論文摘要集[C];2011年
7 黃君;宋挺;嚴(yán)飛;;MODIS數(shù)據(jù)在太湖藍(lán)藻水華分布規(guī)律分析中的應(yīng)用研究[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第四卷)[C];2013年
8 翁建中;王亞超;;螢光技術(shù)在太湖藍(lán)藻水華預(yù)警監(jiān)測(cè)中的應(yīng)用[A];蘇州市自然科學(xué)優(yōu)秀學(xué)術(shù)論文匯編(2008-2009)[C];2010年
相關(guān)重要報(bào)紙文章 前3條
1 潘加保;衛(wèi)星遙感監(jiān)測(cè)太湖藍(lán)藻水華[N];中國(guó)測(cè)繪報(bào);2007年
2 凌軍輝;專(zhuān)家解釋太湖藍(lán)藻水華生成機(jī)制[N];中國(guó)改革報(bào);2008年
3 潘加!√蘸A;遙感技術(shù)成功用于太湖藍(lán)藻水華動(dòng)態(tài)監(jiān)測(cè)預(yù)警[N];中國(guó)測(cè)繪報(bào);2009年
相關(guān)碩士學(xué)位論文 前5條
1 呂凱;太湖藍(lán)藻水華的遙感監(jiān)測(cè)預(yù)警研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
2 佴兆駿;基于CCD數(shù)據(jù)的太湖藍(lán)藻水華監(jiān)測(cè)算法研究[D];西安科技大學(xué);2016年
3 楊婷;氣象因子與太湖藍(lán)藻水華的響應(yīng)關(guān)系研究[D];南京信息工程大學(xué);2012年
4 溫新龍;太湖藍(lán)藻水華遙感監(jiān)測(cè)及風(fēng)場(chǎng)對(duì)其分布的影響研究[D];南京信息工程大學(xué);2014年
5 項(xiàng)文華;基于輻射傳輸模擬的太湖藍(lán)藻水華遙感識(shí)別模式研究[D];南京大學(xué);2012年
,本文編號(hào):2328179
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/2328179.html