Φ335全自動鋼管端面倒棱機自動輸送機構(gòu)的研究
[Abstract]:桅 335 automatic pipe end milling head chamfering machine is an important finishing equipment in steel pipe production line. In this paper, the automatic conveying mechanism of 桅 335 automatic pipe end milling head chamfering machine is studied comprehensively. First, the ADAMS optimization of the steel pipe automatic conveying mechanism is carried out, and the optimization results reduce the driving force and the hydraulic energy consumption of the original moving parts. By checking the strength of the key components in the automatic conveying mechanism and further analyzing the reliability of the key components, the degree of safety and reliability of the key components is explained from the point of view of probability theory and mathematical statistics. Due to the high reliability of the key components, the ANSYS structural optimization design of the key components is carried out from the point of view of material saving. The optimization results reduce the weight of the key components and meet the requirements of strength and stiffness. After realizing the goal of reducing energy consumption and saving materials, the vibration analysis of the automatic conveying mechanism is carried out, which provides data support for improving the vibration characteristics of the conveying mechanism and realizing the smooth transportation. On the basis of this, the PLC control system of the automatic conveying mechanism is designed, and the two modes of automatic conveying and manual conveying are realized, and the production efficiency is improved. The main research contents of this paper are as follows: (1) the driving force optimization of the automatic conveying mechanism parameterizes the related members of the conveying mechanism, and then adopts two optimization schemes of the driving force of the hydraulic cylinder in the mechanism, one is the whole and the other is the local one. The purpose of minimizing the energy consumption of hydraulic cylinder is achieved by selecting the optimal scheme from two kinds of optimization schemes. The results of optimization reduce the average driving force of lifting mechanism and transverse mechanism by 59.4% and 72.7% respectively. (2) strength check and reliability analysis of key components are used in ANSYS to find out the stress distribution of the key parts of the conveying mechanism under the maximum load. According to the strength theory, the strength check of the key parts is carried out. Because the strength check based on the safety factor method can not quantitatively explain the safety and reliability of the bar, the mean value and standard deviation of the load under normal distribution are analyzed according to the ADAMS post-processing module. In order to further analyze the reliability of key components, From the point of view of mathematical statistics and probability theory, it is shown that the reliability of the two key components is above 99.99%. (3) the lightweight design of the key components is due to the high reliability of the key components in the automatic conveying mechanism. In order to save materials and achieve maximum economic benefit, the ANSYS structure of key components is optimized. The optimization results reduce the weight of the two key components by 19.29% and 34.98%, respectively. The lightweight design of the key components is realized. (4) the vibration analysis of the automatic conveying mechanism is carried out on the free vibration analysis and forced vibration analysis of the steel pipe automatic conveying mechanism. The frequency response data of the mechanism are measured, and the vibration characteristics of the conveying mechanism are understood, which provides a data reference for the smooth transmission without resonance. (5) the design of the PLC control system is based on the motion requirements of the conveying mechanism. The PLC control system based on sequential control is designed. The control system has automatic and manual control mode, which improves the production efficiency by means of accurate and automatic transportation, and can realize the point moving transport under special working conditions.
【學(xué)位授予單位】:天津理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TH22
【相似文獻】
相關(guān)期刊論文 前10條
1 馮曉若;一種新型大口徑平頭倒棱機[J];山西機械;2002年S1期
2 何楓,李敏;齒輪倒棱刀的設(shè)計[J];工具技術(shù);2002年10期
3 劉曉莉;;齒輪倒棱工藝[J];機械傳動;2007年02期
4 蔣能;孟慶偉;;齒輪倒棱刀的設(shè)計風(fēng)格及對比分析[J];工具技術(shù);2012年10期
5 賀永富;;檢查倒棱的附件[J];北京機械;1982年02期
6 孫孝先;;自動倒棱機[J];機械工人.冷加工;1987年03期
7 楊繼昌 ,郭蔚泉;硬質(zhì)合金刮削滾刀倒棱計算及結(jié)構(gòu)新探[J];江蘇工學(xué)院學(xué)報;1990年04期
8 黃志壯;;斜齒輪倒棱工藝與設(shè)備設(shè)計[J];機械;1991年03期
9 楊繼昌;硬質(zhì)合金刮削滾刀倒棱計算及結(jié)構(gòu)分析[J];機械工程學(xué)報;1998年04期
10 趙艷紅;倒棱機設(shè)計及其工藝[J];山西機械;2003年01期
相關(guān)重要報紙文章 前3條
1 記者 李祖詩 通訊員 邵碩;“治文罩”:安全生產(chǎn)的法寶[N];中國石化報;2011年
2 記者 陳耀群;華聯(lián)精工倒棱機替代人工去毛刺[N];中國船舶報;2006年
3 本報記者 劉紀生;國產(chǎn)厚壁鋼管銑頭倒棱機發(fā)展前景看好[N];中國冶金報;2007年
相關(guān)碩士學(xué)位論文 前10條
1 吳培龍;焊管倒棱機的應(yīng)用現(xiàn)狀分析與設(shè)計[D];山東大學(xué);2016年
2 鄭帥;Φ335全自動鋼管端面倒棱機自動輸送機構(gòu)的研究[D];天津理工大學(xué);2016年
3 房文偉;鋼管自動倒棱系統(tǒng)的研究與開發(fā)[D];浙江大學(xué);2008年
4 陳凱;新型鋼管銑頭倒棱機的研制[D];天津理工大學(xué);2015年
5 王旭光;大齒輪端廓倒棱面成形法與準軌跡磨棱機研究[D];哈爾濱工業(yè)大學(xué);2011年
6 劉萬順;新型鋼管銑頭倒棱機的研制—厚壁鋼管銑頭倒棱機機械系統(tǒng)的設(shè)計[D];天津理工大學(xué);2015年
7 陳亮;倒棱機機構(gòu)的創(chuàng)新性設(shè)計[D];天津理工大學(xué);2012年
8 顧智春;全自動鋼管平頭倒棱機組的研究[D];東北大學(xué);2009年
9 郭瑞;新型全自動鋼管銑頭倒棱機的研制[D];天津理工大學(xué);2013年
10 劉任;全自動大口徑厚壁鋼管銑頭倒棱機的研制[D];天津理工大學(xué);2013年
,本文編號:2279311
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/2279311.html