貝葉斯方法下半?yún)?shù)混合模型在極端值的應(yīng)用研究
[Abstract]:Extreme rare events have the characteristics of small probability and high loss intensity. The occurrence of their accidents will cause a large number of direct or indirect economic losses, which seriously threaten the stable operation of insurance companies. Therefore, the accurate prediction of extreme rare events is particularly important. At present, the method widely used for extreme rare event prediction is the extreme value theory, but The extreme value theory is very sensitive to the selection of the threshold, and it is the subjective judgment of the user. At the same time, the extremum theory can not evaluate the estimated parameters, can not understand the statistical characteristics of the parameters, and can not get the confidence interval of the parameters, but the Bayesian method can solve the problem well. This paper is based on the basis of extreme value theory. In this paper, a semi parametric hybrid model with piecewise addition is proposed. The threshold below is a semi parametric model which belongs to the category of numerical approximation. The above threshold is used in the generalized Pareto (GPD) distribution. The generalized Pareto model plays an important role in estimating the extreme subloci of rare events, especially for the fitting accuracy of heavy tail loss. In this paper, the Bayesian method is used to model, select the appropriate prior distribution of parameters, combine the likelihood function, deduce the posterior distribution of the mixed model, and then use Markov Montecarlo (MCMC) to sample the posterior distribution, get the frequency distribution map of the parameters, and then pass the sampling results to get the statistical characteristics of the parameters. In the selection of the threshold value, the threshold is selected. The semi parametric model is used in the following part of the model. The semi parametric model is a numerical approximation method. The theory is more mature and has a wide range of applications at home and abroad. However, the existing research has not been used in the Bayesian estimation and is not used in combination with the extreme value theory. Therefore, this paper is in the loss assessment study. The semi parametric model is introduced to achieve more accurate prediction results. In theory, the current popular extremum theory and parameter mixed model can be effectively improved. The empirical results show that the semi parametric model is better than the parameter model for the fitting effect of the lower part of the threshold. Finally, the prediction results of the loss distribution are more reasonable, and this is also the case. It provides an improved way for the prediction of the pinnacle thick tail data set. Therefore, this paper improves the accuracy of the peak tailing loss assessment and provides a new way for the loss prediction.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:F224;F840.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前6條
1 任德記;高滿軍;李廣民;;混合模型在大壩變形分析中的應(yīng)用[J];水利科技與經(jīng)濟;2008年01期
2 尤芳;;Gibbs抽樣在正態(tài)混合模型中的參數(shù)估計[J];統(tǒng)計與決策;2009年15期
3 連保勝;胡適耕;;R&D和邊干邊學(xué)的混合模型的穩(wěn)定性分析[J];數(shù)學(xué)雜志;2007年03期
4 章偉;;混合模型在經(jīng)濟時間序列預(yù)測中的應(yīng)用研究[J];計算機仿真;2011年06期
5 孫春華,周廣證,朱燈林,朱雅萍;基于網(wǎng)絡(luò)的模具CAD/CAM系統(tǒng)實現(xiàn)[J];機電產(chǎn)品開發(fā)與創(chuàng)新;2003年04期
6 ;[J];;年期
相關(guān)會議論文 前10條
1 沈樂君;;基于混合模型的多目標(biāo)實時跟蹤算法[A];2013體育計算機應(yīng)用論文集[C];2013年
2 紀(jì)琳;黃震宇;;中頻振動混合模型理論的應(yīng)用局限性分析[A];現(xiàn)代振動與噪聲技術(shù)(第九卷)[C];2011年
3 汪傳建;李曉光;王大玲;于戈;;一種基于混合模型的文本分類器的研究與實現(xiàn)[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2004年
4 徐斌;馬盡文;;一種柯西混合模型上梯度型BYY和諧學(xué)習(xí)算法[A];第十三屆全國信號處理學(xué)術(shù)年會(CCSP-2007)論文集[C];2007年
5 蘭永紅;吳敏;佘錦華;;基于二維混合模型的最優(yōu)重復(fù)控制[A];第二十六屆中國控制會議論文集[C];2007年
6 張勝利;張沅;;混合模型方法對QTL的檢測及定位效果[A];生命科學(xué)與生物技術(shù):中國科協(xié)第三屆青年學(xué)術(shù)年會論文集[C];1998年
7 馬凌;周江;王文鼐;;突發(fā)性業(yè)務(wù)流的Gamma泊松混合模型及排隊性能研究[A];中國通信學(xué)會第五屆學(xué)術(shù)年會論文集[C];2008年
8 沈文豪;聶大仕;謝菲;;氣升式內(nèi)環(huán)流反應(yīng)器的液相流動混合模型[A];第一屆全國化學(xué)工程與生物化工年會論文摘要集(上)[C];2004年
9 趙廣建;,
本文編號:2175105
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/2175105.html