基于位置和乘車信息的公交站點(diǎn)客流預(yù)測(cè)方法
本文選題:位置 切入點(diǎn):乘車信息 出處:《山東大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:在交通擁擠日趨嚴(yán)重、交通污染與交通事故等問(wèn)題日益突出的背景下,優(yōu)先發(fā)展公共交通是緩解大中城市交通問(wèn)題最有效的手段之一。公共交通的發(fā)展同時(shí)可以促進(jìn)城市經(jīng)濟(jì)的發(fā)展,公共交通已成為城市客運(yùn)交通系統(tǒng)的主體,成為國(guó)家在基礎(chǔ)建設(shè)領(lǐng)域中重點(diǎn)支持發(fā)展的產(chǎn)業(yè)之一。傳統(tǒng)的公交客流統(tǒng)計(jì)方式存在調(diào)查步驟繁瑣、成本高、精確度低等一種或多種弊端,本文通過(guò)對(duì)地面常規(guī)公交自動(dòng)售票系統(tǒng)收集的數(shù)據(jù)進(jìn)行數(shù)據(jù)挖掘,對(duì)刷卡信息進(jìn)行統(tǒng)計(jì)分析,得到公交客流出行特性和規(guī)律,更加高效、精確地預(yù)測(cè)公交客流,并有效地利用了現(xiàn)有交通信息資源。本文在查閱相關(guān)研究文獻(xiàn)的基礎(chǔ)上,從站點(diǎn)客流估計(jì)、客流特性分析和交通短時(shí)預(yù)測(cè)方法三個(gè)方面對(duì)國(guó)內(nèi)外研究成果進(jìn)行綜述,總結(jié)對(duì)比現(xiàn)有研究成果,指出本論文在此基礎(chǔ)上的研究重點(diǎn)。首先,對(duì)公交自動(dòng)售票系統(tǒng)進(jìn)行數(shù)據(jù)特征分析,根據(jù)數(shù)據(jù)特征和客流估計(jì)需求對(duì)原始數(shù)據(jù)進(jìn)行數(shù)據(jù)篩選和數(shù)據(jù)剔除預(yù)處理,對(duì)刷卡記錄進(jìn)行聚類分析,融合自動(dòng)售票系統(tǒng)數(shù)據(jù)、GPS數(shù)據(jù)、靜態(tài)路網(wǎng)和公交調(diào)度信息等多源數(shù)據(jù),進(jìn)行位置和乘車信息的時(shí)間匹配,得到匹配站點(diǎn),估計(jì)站點(diǎn)客流。其次,基于多源數(shù)據(jù)融合的站點(diǎn)匹配算法,以濟(jì)南市智能公共交通系統(tǒng)數(shù)據(jù)為例,從客流的方向不均衡性和供需平衡性對(duì)線路客流進(jìn)行特性分析,從客流的通勤特性和時(shí)間不均衡性對(duì)站點(diǎn)客流進(jìn)行特性分析,針對(duì)站點(diǎn)的通勤和時(shí)間特性選取線路的特征站點(diǎn),為客流預(yù)測(cè)提供案例站點(diǎn)。最后,對(duì)影響站點(diǎn)客流的因素進(jìn)行變量分析,選取時(shí)間序列模型和改進(jìn)BP神經(jīng)網(wǎng)絡(luò)模型對(duì)特征站點(diǎn)進(jìn)行客流預(yù)測(cè),比較不同預(yù)測(cè)模型對(duì)不同通勤類型站點(diǎn)客流預(yù)測(cè)的精度,得出站點(diǎn)客流預(yù)測(cè)的結(jié)論。
[Abstract]:Against the background of increasingly serious traffic congestion, traffic pollution and traffic accidents, Giving priority to the development of public transport is one of the most effective means to alleviate the traffic problems in large and medium-sized cities. The development of public transport can also promote the development of urban economy, and public transport has become the main body of urban passenger transport system. It has become one of the industries that support the development of the country in the field of infrastructure construction. The traditional way of bus passenger flow statistics has one or more disadvantages, such as tedious investigation steps, high cost, low precision and so on. In this paper, the data collected by the ground bus automatic ticket selling system are mined, and the information of credit card is statistically analyzed, and the travel characteristics and rules of public transport flow are obtained, so as to predict the bus passenger flow more efficiently and accurately. On the basis of consulting relevant research literature, this paper summarizes the domestic and foreign research achievements from three aspects: station passenger flow estimation, passenger flow characteristic analysis and traffic short-term forecasting method. This paper summarizes and compares the existing research results, and points out the key points of this paper. Firstly, the paper analyzes the data characteristics of the bus automatic ticket system. According to the characteristics of data and the demand of passenger flow estimation, the original data are filtered and pre-processed, the credit card records are clustered and analyzed, and the GPS data, static road network and bus dispatch information are fused, and the multi-source data, such as GPS data, static road network and bus dispatch information, are fused. Matching the location with the time of the ride information, getting the matching station, estimating the passenger flow of the station. Secondly, the station matching algorithm based on multi-source data fusion, taking Jinan intelligent public transportation system data as an example, The characteristics of line passenger flow are analyzed from the disequilibrium of passenger flow direction and the balance of supply and demand, the characteristic analysis of station passenger flow is carried out from the characteristics of commuting and time imbalance of passenger flow, and the characteristic station of line is selected according to the commuting and time characteristics of the station. Finally, the factors influencing the passenger flow are analyzed, and the time series model and the improved BP neural network model are selected to forecast the passenger flow of the characteristic stations. This paper compares the accuracy of different forecasting models for passenger flow of different commuting stations, and draws the conclusion of forecasting passenger flow at different stations.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U491.17
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓寶睿;柳一敏;范偉康;高傳龍;馮文獲;張帥;;超長(zhǎng)公交線路客流特性和運(yùn)營(yíng)問(wèn)題分析[J];武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版);2015年06期
2 馬曉磊;劉從從;劉劍鋒;陳鋒;于海洋;;基于公交IC卡數(shù)據(jù)的上車站點(diǎn)推算研究[J];交通運(yùn)輸系統(tǒng)工程與信息;2015年04期
3 楊萬(wàn)波;王昊;葉曉飛;徐闖闖;姜冬雪;;基于GPS和IC卡數(shù)據(jù)的公交出行OD推算方法[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期
4 范海雁;姚佼;;公交客流統(tǒng)計(jì)時(shí)段的劃分方法[J];森林工程;2014年06期
5 沈國(guó)江;朱蕓;錢曉杰;胡越;;短時(shí)交通流組合模型預(yù)測(cè)[J];南京理工大學(xué)學(xué)報(bào);2014年02期
6 謝仲磊;;基于IC卡數(shù)據(jù)的公交線網(wǎng)評(píng)價(jià)[J];交通標(biāo)準(zhǔn)化;2013年21期
7 郭士永;李文權(quán);白薇;張東;;基于最小二乘向量機(jī)的公交站點(diǎn)短時(shí)客流預(yù)測(cè)[J];武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版);2013年03期
8 陳紹輝;陳艷艷;尹長(zhǎng)勇;;基于特征站點(diǎn)的公交IC卡數(shù)據(jù)站點(diǎn)匹配方法研究[J];北京工業(yè)大學(xué)學(xué)報(bào);2012年06期
9 陳紹輝;陳艷艷;賴見(jiàn)輝;;基于GPS與IC卡數(shù)據(jù)的公交站點(diǎn)匹配方法[J];公路交通科技;2012年05期
10 顧楊;韓印;方雪麗;;基于ARMA模型的公交樞紐站客流量預(yù)測(cè)方法研究[J];交通信息與安全;2011年02期
相關(guān)碩士學(xué)位論文 前7條
1 王周全;基于IC卡數(shù)據(jù)與GPS數(shù)據(jù)的公交客流時(shí)空分布研究[D];西南交通大學(xué);2016年
2 左快樂(lè);基于IC卡數(shù)據(jù)的不同時(shí)間層次公交客流預(yù)測(cè)方法與應(yīng)用研究[D];東南大學(xué);2016年
3 尹婷婷;基于大數(shù)據(jù)的公交調(diào)度規(guī)則研究[D];北京交通大學(xué);2015年
4 王月s,
本文編號(hào):1652216
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/1652216.html