天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

新型組合濕地在池塘養(yǎng)殖中的應(yīng)用研究

發(fā)布時(shí)間:2018-03-06 16:28

  本文選題:人工濕地 切入點(diǎn):池塘養(yǎng)殖 出處:《上海海洋大學(xué)》2016年碩士論文 論文類型:學(xué)位論文


【摘要】:近年來,人工濕地在池塘養(yǎng)殖中的應(yīng)用越來越廣泛。本研究將生物濾池和水上種植工藝有機(jī)結(jié)合,研發(fā)了一種適于經(jīng)濟(jì)植物種植和水質(zhì)改善的組合濕地,研究了該組合濕地在池塘養(yǎng)殖中的綜合應(yīng)用效果,以期為人工濕地在池塘養(yǎng)殖水質(zhì)修復(fù)中的運(yùn)用提供更多科學(xué)依據(jù)。主要研究結(jié)果如下:1.設(shè)計(jì)構(gòu)建了一種適于經(jīng)濟(jì)植物種植和水質(zhì)改善的組合濕地。濕地主體為長×寬×深為25 m×17 m×1 m的不透水磚砌體,有效容水體積為209 m3,由進(jìn)水端、種植區(qū)和收水端等三部分組成。進(jìn)水端包括布水槽和卵石濾層。經(jīng)集水井初步沉淀過濾的養(yǎng)殖廢水,通過1臺(tái)進(jìn)水提升泵(功率:3-4 KW,揚(yáng)程:30 m)泵入系統(tǒng)進(jìn)水管,進(jìn)水管上方設(shè)置有鋸齒堰開口布水槽,緊貼配水槽鋪設(shè)有深度90 cm、粒徑8~15 cm卵石濾層。廢水經(jīng)布水槽流入系統(tǒng),卵石層起到再過濾作用。種植區(qū)底部鋪設(shè)30 cm厚,粒徑10~20 mm,空隙率為0.4的輕質(zhì)陶粒,基質(zhì)底部均勻安裝有6根PVC多孔收水管,管內(nèi)內(nèi)置納米微孔曝氣管,長度與多孔PVC管相當(dāng),由1臺(tái)鼓風(fēng)機(jī)(功率:0.75 k W;出氣量:110 m3/h)連接進(jìn)行底部曝氣。種植區(qū)水面安放尺寸為0.5 m×0.5 m×0.08 m的輕質(zhì)浮板,每塊浮板上留有4個(gè)孔徑為10 cm的栽培孔,通過栽種盤種植水稻,栽種密度為9.24株/m~2,浮板覆蓋率為57.80%。收水端由鋪設(shè)在基質(zhì)層下方的收水管加排水溝組成。收水端基質(zhì)層底部安裝有總收水管,并與多孔收水管連接,總收水管與溢流管連通,溢流管位于池壁外側(cè)收水溝中,經(jīng)處理后的水體經(jīng)收水溝流入修飾塘。2.研究了組合濕地最佳運(yùn)行參數(shù)。分別研究了不同曝氣強(qiáng)度和不同水力負(fù)荷對(duì)組合濕地水處理能力的影響。結(jié)果表明:該組合濕地在水力負(fù)荷為0.29m/d~0.58 m/d,氣水比為2~4時(shí)都可以獲得比較好的水處理效果。將其與池塘養(yǎng)殖結(jié)合,開展了凈化養(yǎng)殖廢水的試驗(yàn)研究,在水力負(fù)荷為0.58 m/d,氣水比為2的條件下,組合濕地對(duì)養(yǎng)殖廢水中總氨氮(TAN)、總氮(TN)、總磷(TP)和高錳酸鹽指數(shù)(CODMn)的去除率分別為32.66%~35.57%、59.17%~64.36%、69.45%~74.54%和70.24%~75.43%,出水水質(zhì)達(dá)到漁業(yè)水質(zhì)標(biāo)準(zhǔn)(GB11607)。由于池塘養(yǎng)殖廢水中TAN和TN的負(fù)荷均不大,并考慮在實(shí)際生產(chǎn)中的能耗和成本,確定濕地運(yùn)行方式為連續(xù)進(jìn)水—滯留反應(yīng)—連續(xù)出水—排空閑置,水力停留時(shí)間為1 d,水力負(fù)荷為0.58 m/d,氣水比為2:1。3.探討了組合濕地對(duì)養(yǎng)殖池塘水質(zhì)修復(fù)效果。2015年6月-10月,選擇8口面積為400 m~2的精養(yǎng)池塘,4口與組合濕地連接形成復(fù)合池塘養(yǎng)殖系統(tǒng),2口作為對(duì)照塘,研究了組合濕地對(duì)精養(yǎng)魚池水質(zhì)的調(diào)控作用。結(jié)果表明:經(jīng)組合濕地對(duì)養(yǎng)殖池塘廢水進(jìn)行循環(huán)利用,復(fù)合池塘水質(zhì)得到有效調(diào)控,各水質(zhì)理化參數(shù)均值為:透明度(SD)18.42 cm、p H 7.96、溶氧(DO)4.49 mg/L、CODMn 19.87mg/L、TAN 1.03 mg/L、亞硝態(tài)氮(NO2--N)0.05 mg/L、TN 5.37 mg/L和TP 1.16mg/L。經(jīng)統(tǒng)計(jì)分析,復(fù)合塘的SD、p H、TAN、TN、TP、和CODMn等指標(biāo)均顯著低于對(duì)照塘(P0.05)。4.對(duì)不同池塘養(yǎng)殖系統(tǒng)養(yǎng)殖效果及氮磷收支進(jìn)行了研究。結(jié)果表明:復(fù)合塘主養(yǎng)草魚收獲規(guī)格、成活率和產(chǎn)量分別為0.38 kg、71.41%和10054.38 kg/hm~2,均高于對(duì)照塘,總產(chǎn)量為13661.06 kg/hm~2,顯著高于對(duì)照塘;水稻單產(chǎn)為7127.01kg/hm~2,與同時(shí)期栽種于稻田中的水稻相比,僅減產(chǎn)23.02%。在對(duì)各養(yǎng)殖系統(tǒng)氮磷收支的研究結(jié)果表明:復(fù)合塘對(duì)氮、磷利用率分別為48.11%和25.10%,對(duì)照塘僅為32.05%和18.57%;復(fù)合塘底泥沉積氮磷比例為21.08%和42.04%,對(duì)照塘高達(dá)39.48%和59.73%;復(fù)合塘干塘?xí)r氮磷排放強(qiáng)度為4.91 kg/400m~2和0.99kg/400m~2,而復(fù)合塘水體可以重復(fù)利用。說明與組合濕地復(fù)合形成的復(fù)合循環(huán)水養(yǎng)殖系統(tǒng)能夠有效控制氮、磷輸出中主要項(xiàng)目的比例,提高氮、磷利用率,增加養(yǎng)殖產(chǎn)量。還可以效減少底泥氮、磷沉積,降低養(yǎng)殖池塘內(nèi)源性污染爆發(fā)的可能性,提升養(yǎng)殖魚類成活率,有利于池塘養(yǎng)殖的健康發(fā)展。5.探討了組合濕地—池塘復(fù)合養(yǎng)殖模式的綜合效益。對(duì)各養(yǎng)殖池塘投入與產(chǎn)出的研究結(jié)果表明,雖然復(fù)合塘人工濕地建造與運(yùn)行成本較高,電能消耗較多,投入成本較多,但經(jīng)濟(jì)效益卻優(yōu)于對(duì)照塘。復(fù)合塘純收入為26300元/hm~2,而對(duì)照塘僅為14900元/hm~2,較其提高76.51%;綜合效益分析結(jié)果表明,復(fù)合塘綜合效果指標(biāo)為1.05,對(duì)照塘為0.84。因此,組合濕地—池塘復(fù)合養(yǎng)殖模式能顯著提高產(chǎn)值和經(jīng)濟(jì)效益,兼具生態(tài)效益優(yōu)勢,可為我國漁業(yè)轉(zhuǎn)型升級(jí)提供一種可持續(xù)的池塘養(yǎng)殖新模式。
[Abstract]:In recent years, artificial wetland in pond is used more and more widely. In this study, biological filter and water cultivation technology combined, developed a combination of economic plants and wetland for water quality improvement, comprehensive study of the wetland in pond should be used, in order to provide a more scientific basis for the use of artificial wetland in water pond restoration. The main results are as follows: 1. design a combination of wetland and water quality improvement for economic plants. Wetland body length x width x depth is 25 m * 17 m * 1 M waterproof brick masonry, the effective water holding volume is 209 m3 by the end, water, three parts of planting area and water receiving end. The water inlet end comprises a cloth trough and the gravel filter layer. The aquaculture wastewater collection wells preliminary sedimentation filtration, through 1 sets of water pump (Power: 3-4 KW head: 30 m) pump system Water pipe, water inlet pipe is arranged above the sawtooth weir opening cloth sink, close to the sink with paved with a depth of 90 cm, diameter 8~15 cm gravel filter layer. By distributing tank into the system, the gravel layer filtering effect. The planting area at the bottom of the laying of 30 cm thick 10~20, diameter mm, porosity is 0.4 light ceramsite the 6 PVC collection pipe arranged at the bottom of the porous matrix, pipe built-in nano microporous aeration pipe, and the length of the porous PVC tube, by 1 blowers (Power: 0.75 K W; output: 110 m3/h) connection. The planting area of water placed bottom aeration light floating plate size of 0.5 m * 0.5 m * 0.08 m, each floating plate left planting holes of the 4 aperture is 10 cm, by planting disc planting rice, planting density of 9.24 plants /m~2, the floating plate coverage for 57.80%. water collection end by laying in the matrix layer below the drain. The water pipe and the matrix layer at the bottom end equipped with the total income Water and porous received water pipe connection, the total income and the overflow pipe is communicated with the water pipe, an overflow pipe is located in the wall outside collecting gutter, the treated water in the ditch into the research on the combined optimal operation parameters of.2. modified wetland pond. The effects of different aeration intensity and different hydraulic load on the combination of wetland water treatment capacity respectively. The research results show that the combination of wetland. In the hydraulic loading of 0.29m/d~0.58 m/d, gas and water can get water treatment effect is better than 2~4. Combined with the pond, carried out the test on the purification of aquaculture wastewater, the water load is 0.58 m/d, the ratio of gas and water is 2. The combination of total ammonia wastewater in wetland (TAN), total nitrogen (TN), total phosphorus (TP) and permanganate index (CODMn) and 59.17%~64.36% removal rates were 32.66%~35.57%, 69.45%~74.54%, and 70.24%~75.43%, the water quality can reach the standard of fishery water quality ( GB11607 TAN and TN). Because the pond effluent in load are not large, and consider the cost and energy consumption in the actual production, to determine the operating mode for the continuous inflow Wetland - continuous water retention reaction - emptying, hydraulic retention time was 1 D, the hydraulic load is 0.58 m/d, the combination of Wetland water gas.2015 aquaculture pond water remediation effect in June -10 month is 2:1.3., 8 port area ponds was 400 m~2, and 4 combined to form a composite connected wetland pond culture system, 2 as control pond, fish pond water on the role of fine combination of wetland. The results show that the combination of wetland aquaculture wastewater recycling, composite effective control of pond water quality, the water physicochemical parameters: mean transparency (SD) 18.42 cm, P 7.96 H, dissolved oxygen (DO) 4.49 mg/L, CODMn 19.87mg/L, TAN 1.03 mg/L, nitrite-N (NO2--N) 0. 05 mg/L, TN 5.37 mg/L and TP 1.16mg/L. through statistical analysis, composite SD P H Tang, TAN, TN, TP, and CODMn were significantly lower than that of the control pond (P0.05).4. were studied in different ponds and effects of nitrogen and phosphorus balance breeding system. The results show that the composite Tang Lord grass carp harvest specifications, survival rate and yield were 0.38 kg, 71.41% and 10054.38 kg/hm~2 were higher than that of the control pond, the total yield was 13661.06 kg/hm~2, significantly higher than that of the control pond; rice yield is 7127.01kg/hm~2, compared with the same period planted in paddy fields in rice production, only 23.02%. in the research on nitrogen and phosphorus balance each farming system. The results showed that: composite pond on nitrogen, phosphorus utilization rates were 48.11% and 25.10%, the control pond is only 32.05% and 18.57%; composite pond sediment nitrogen and phosphorus ratio of 21.08% and 42.04%, the control pond up to 39.48% and 59.73%; composite pond dry pond when nitrogen and phosphorus emissions intensity of 4.91 and kg/400m~2 0.99kg/400m~2, while the composite pond water can be reused. The composite recirculating aquaculture system combined wetland can effectively control nitrogen, phosphorus output in the proportion of major projects, improve the utilization rate of nitrogen, phosphorus, increase in aquaculture production. Also can effectively reduce sediment nitrogen, phosphorus deposition, reducing the possibility of the outbreak of endogenous pollution in aquaculture ponds fish, improve the survival rate, there is conducive to the healthy development of.5. pond discusses comprehensive benefit of combination of wetland pond integrated aquaculture model. The study of aquaculture ponds of input and output. The results show that although the composite artificial wetland pond construction and operation cost is high, consume more power, input costs more, but the economic benefit is Tang Tang is better than that of control. The composite net income is 26300 yuan /hm~2, while the control pond is only 14900 yuan /hm~2, compared with the increase of 76.51%; comprehensive benefit analysis results show that the composite integrated pond The effect index is 1.05, while the control pond is 0.84.. Therefore, combined wetland pond compound aquaculture mode can significantly increase output and economic benefits, and has advantages of ecological benefits. It can provide a new sustainable aquaculture mode for China's fishery transformation and upgrading.

【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:S959;S964

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 龍中原;鄢治軍;余護(hù);;當(dāng)前提高池塘養(yǎng)殖效益幾項(xiàng)關(guān)鍵措施[J];漁業(yè)致富指南;2009年15期

2 鄭閩泉,余乃鳳,吳德喜,黃信云;山區(qū)池塘養(yǎng)殖巴西鯛試驗(yàn)[J];水利漁業(yè);2000年06期

3 范啟洪;池塘養(yǎng)殖消毒七要素[J];內(nèi)陸水產(chǎn);2000年11期

4 梁強(qiáng);池塘養(yǎng)殖高背鯽魚技術(shù)[J];云南農(nóng)業(yè);2000年03期

5 陶國東 ,沈芬華;太湖白魚的池塘養(yǎng)殖[J];內(nèi)陸水產(chǎn);2001年09期

6 蔡敏;鱸魚池塘養(yǎng)殖注意事項(xiàng)[J];中國水產(chǎn);2002年09期

7 宋林坤;池塘養(yǎng)殖鯪魚技術(shù)[J];北京農(nóng)業(yè);2002年10期

8 顧冬郎;池塘淤積的危害及對(duì)策[J];江西水產(chǎn)科技;2002年01期

9 蔡敏;鱸魚池塘養(yǎng)殖注意事項(xiàng)[J];科學(xué)養(yǎng)魚;2002年08期

10 李廣聯(lián);鱘魚池塘養(yǎng)殖試驗(yàn)[J];內(nèi)陸水產(chǎn);2002年01期

相關(guān)會(huì)議論文 前9條

1 張重祉;吳志強(qiáng);王玉彬;鄒琦;;茅蓮湖垂釣池塘養(yǎng)殖樣式試驗(yàn)[A];中國海洋湖沼動(dòng)物學(xué)會(huì)魚類學(xué)分會(huì)第七屆會(huì)員代表大會(huì)暨朱元鼎教授誕辰110周年慶學(xué)術(shù)研討會(huì)學(xué)術(shù)論文摘要集[C];2006年

2 唐章生;曾令方;盧智發(fā);;巴西鯛池塘養(yǎng)殖試驗(yàn)[A];廣西水產(chǎn)研究所論文集(2001—2005)[C];2006年

3 劉興國;徐皓;谷堅(jiān);顧兆俊;;池塘生態(tài)工程化循環(huán)水養(yǎng)殖模式系統(tǒng)研究[A];2010年中國水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2011年

4 吳飛飛;紀(jì)建悅;許罕多;;基于LCA方法的對(duì)蝦池塘養(yǎng)殖碳足跡研究[A];第十三屆中國管理科學(xué)學(xué)術(shù)年會(huì)論文集[C];2011年

5 劉晃;徐皓;蔣勵(lì);;我國水產(chǎn)品池塘養(yǎng)殖氨排放總量的估算[A];全國畜禽和水產(chǎn)養(yǎng)殖污染監(jiān)測與控制治理技術(shù)交流研討會(huì)論文集[C];2008年

6 王廣軍;謝駿;余德光;李志斐;郁二蒙;王海英;龔?fù)麑?;典型池塘養(yǎng)殖模式介紹及其發(fā)展方向[A];2012年中國水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2012年

7 陶玲;李曉莉;張世羊;張春雪;宋景華;李谷;;兩種生態(tài)溝渠在池塘生態(tài)工程中的應(yīng)用[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉(zhuǎn)變——2011年中國水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2011年

8 李海洋;侯冠軍;;東至縣黃泥湖環(huán)境友好型池塘主養(yǎng)草魚技術(shù)模式[A];中國南方十六。ㄊ、區(qū))水產(chǎn)學(xué)會(huì)漁業(yè)學(xué)術(shù)論壇第二十六次學(xué)術(shù)交流大會(huì)論文集(上冊)[C];2010年

9 陳家長;胡庚東;瞿建宏;;太湖流域池塘養(yǎng)殖青蝦對(duì)環(huán)境的影響[A];全國農(nóng)業(yè)面源污染與綜合防治學(xué)術(shù)研討會(huì)論文集[C];2004年

相關(guān)重要報(bào)紙文章 前10條

1 長江所;構(gòu)建復(fù)合人工濕地—池塘養(yǎng)殖新型生態(tài)系統(tǒng)[N];中國漁業(yè)報(bào);2007年

2 高物德;池塘養(yǎng)殖石斑魚效益可觀[N];中國漁業(yè)報(bào);2012年

3 劉克;池塘養(yǎng)殖鯉魚提高產(chǎn)量關(guān)鍵步驟[N];中國漁業(yè)報(bào);2013年

4 許贊煥;信息化池塘養(yǎng)殖在北京實(shí)施[N];中國漁業(yè)報(bào);2013年

5 記者 王恩瑞;我省今年將改擴(kuò)建標(biāo)準(zhǔn)池塘4950畝[N];山西日?qǐng)?bào);2011年

6 記者 張曉紅;自治區(qū)首個(gè)池塘養(yǎng)殖信息管理平臺(tái)在我市投用[N];鄂爾多斯日?qǐng)?bào);2013年

7 中國水產(chǎn)科學(xué)研究院;“復(fù)合池塘養(yǎng)殖典型模式構(gòu)建與應(yīng)用”成果通過鑒定[N];中國漁業(yè)報(bào);2014年

8 記者 胡佳逸;老池塘“改”出新生機(jī)[N];蘇州日?qǐng)?bào);2011年

9 中國水產(chǎn)科學(xué)研究院;鄂爾多斯池塘養(yǎng)殖在線監(jiān)控系統(tǒng)有效降低養(yǎng)殖風(fēng)險(xiǎn)[N];中國漁業(yè)報(bào);2013年

10 特約記者 孫慧武;我國建立首個(gè)自主產(chǎn)權(quán)池塘養(yǎng)殖生態(tài)系統(tǒng)動(dòng)態(tài)模型[N];中國漁業(yè)報(bào);2010年

相關(guān)博士學(xué)位論文 前1條

1 劉興國;池塘養(yǎng)殖污染與生態(tài)工程化調(diào)控技術(shù)研究[D];南京農(nóng)業(yè)大學(xué);2011年

相關(guān)碩士學(xué)位論文 前6條

1 彭安德;河口區(qū)海參池塘水環(huán)境周年變化規(guī)律研究[D];大連海洋大學(xué);2015年

2 蔣濤;池塘養(yǎng)殖綜合效益評(píng)價(jià)研究[D];中國海洋大學(xué);2015年

3 高毛林;新型組合濕地在池塘養(yǎng)殖中的應(yīng)用研究[D];上海海洋大學(xué);2016年

4 楊琳;利用多級(jí)生物系統(tǒng)修復(fù)池塘養(yǎng)殖環(huán)境[D];南京農(nóng)業(yè)大學(xué);2008年

5 鄭俊惠;鱖魚苗種池塘生態(tài)培育關(guān)鍵技術(shù)研究與示范可行性研究報(bào)告[D];華中師范大學(xué);2013年

6 張立通;綜合生物修復(fù)條件下對(duì)蝦池塘養(yǎng)殖容量評(píng)估模型[D];中國海洋大學(xué);2010年



本文編號(hào):1575591

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/1575591.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7834b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com