重慶長壽電網(wǎng)負(fù)荷特性分析與負(fù)荷預(yù)測研究
發(fā)布時間:2018-02-20 23:14
本文關(guān)鍵詞: 負(fù)荷預(yù)測 負(fù)荷預(yù)測系統(tǒng) 網(wǎng)絡(luò)技術(shù) 灰色模型 負(fù)荷特性分析 出處:《湖北工業(yè)大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:長久以來,電力負(fù)荷預(yù)測都是研究電力市場的至關(guān)重要課題,尤其是近年來,電網(wǎng)的規(guī)模不斷擴(kuò)增,研究電網(wǎng)負(fù)荷時需要考慮的因素也不斷增多。冬夏時節(jié)空調(diào)的負(fù)荷增大,電網(wǎng)使用量達(dá)到最大值,電網(wǎng)進(jìn)入豐谷期;隨著近幾年工業(yè)的不斷發(fā)展,工業(yè)用電量也在不斷增加;一些不可預(yù)知且不斷出現(xiàn)的自然災(zāi)害等因素,對測量電網(wǎng)負(fù)荷造成諸多無法預(yù)料的困難;并且從近幾年電網(wǎng)數(shù)據(jù)統(tǒng)計發(fā)現(xiàn),電網(wǎng)負(fù)荷率和利用小時都在不同程度的降低,讓我們的電網(wǎng)安全和經(jīng)濟(jì)運行上的困難進(jìn)一步加大。想要控制好我們國家在電網(wǎng)項目中的投資,最大限度的提高發(fā)電設(shè)備和燃料的使用效率,對水電、火電發(fā)電之間按照一定的比例進(jìn)行重新劃分,達(dá)到節(jié)約能源減少污染排放的目標(biāo),那么將把負(fù)荷分析預(yù)測的工作做好就顯得非常關(guān)鍵;這對于我們的大型用電企業(yè)來講,好處也是非常之多的,一方面在供電設(shè)備上面的投資減少,另一方面還可以實現(xiàn)電網(wǎng)公司的削峰平谷,而且由于峰谷電價的存在,使得大型用電企業(yè)既可以合理安排生產(chǎn)工作,也可以把生產(chǎn)成本降低;最后對于普通的民眾來講,電力負(fù)荷預(yù)測能保證用戶在用電高峰使用上高質(zhì)量的電能而且保證他們的用電的需求量,進(jìn)而居民家里的電氣設(shè)備的使用壽命也得到提高。電力系統(tǒng)負(fù)荷的科學(xué)準(zhǔn)確預(yù)測是電力部門進(jìn)行正確決策的依據(jù)和保障之一,它將有利于發(fā)電部門制定經(jīng)濟(jì)合理的系統(tǒng)發(fā)電的相關(guān)計劃,有效的控制成本;根據(jù)電網(wǎng)數(shù)據(jù)預(yù)測結(jié)果,對相關(guān)部門制定強(qiáng)有力的電力規(guī)劃方案,提供可靠數(shù)據(jù)來源;對計劃用電管理非常有利,獲得需求分析情況,推進(jìn)電力工業(yè)的市場化;有利于調(diào)度部門對電力提前進(jìn)行調(diào)度安排,不僅有利于電力收入,而且對社會公共效益提升也有很大的幫助;對保證電網(wǎng)的穩(wěn)定運行也是十分有力的。本文里提出了一種電網(wǎng)負(fù)荷的預(yù)測方法,這是一種在灰色模型的基礎(chǔ)上,通過不斷改進(jìn)得到的,這種預(yù)測辦法首選對指數(shù)進(jìn)行加權(quán),打破原始負(fù)荷的排列形式,再研究受到日類型以及氣象條件因素影響較大的母線,依據(jù)灰色關(guān)聯(lián)度的理論建立日特征向量,在此基礎(chǔ)上找到一些最優(yōu)相似日,最后歷史負(fù)荷的樣本即上述選取日的母線負(fù)荷。根據(jù)遠(yuǎn)的小、近的大的規(guī)律,在選取負(fù)荷樣本時,選取那些影響相對較大的母線以就近原則,反之也成立。這種方法既充分利用了樣本里面數(shù)據(jù)的有用信息,又使得樣本中數(shù)據(jù)的隨機(jī)性減小,還能夠減弱異常值的影響。本文通過研究重慶市長壽供電分公司的計算實例,充分證明了對電力負(fù)荷分類處理的實用性和科學(xué)性,并且也在一定程度上,體現(xiàn)出本文里提出的負(fù)荷預(yù)測方法,有很高的實踐效益。
[Abstract]:For a long time, power load forecasting has been a very important topic in the study of power market. Especially in recent years, the scale of power grid has been expanded, and the factors to be considered in the study of power grid load have been increasing, and the load of air conditioning is increasing in winter and summer. With the development of industry in recent years, the power consumption of industry is also increasing, and some unpredictable and recurring natural disasters and other factors, It is difficult to measure the load of the power network, and it is found that the load rate and the hours of utilization are decreasing in different degree from the statistics of the power network data in recent years. We want to control our country's investment in power grid projects, maximize the efficiency of power generation equipment and fuel, and make use of hydropower. If thermal power generation is reclassified according to a certain proportion to achieve the goal of saving energy and reducing pollution emissions, it will be very critical to do a good job of load analysis and forecasting; this is very important for our large power enterprises. The benefits are also very large. On the one hand, the investment in power supply equipment is reduced, on the other hand, it is possible to realize the peak-cutting and leveling valley of power grid companies. Moreover, due to the existence of peak and valley electricity prices, large power enterprises can not only reasonably arrange production work, It can also reduce production costs; finally, for ordinary people, power load forecasting can ensure that consumers use high quality electricity at peak consumption and ensure their demand for electricity. Furthermore, the service life of the electrical equipment in the household has also been improved. The scientific and accurate prediction of the power system load is one of the bases and guarantees for the power department to make the correct decision. It will be helpful for the power generation department to make the relevant plan of economic and reasonable system power generation, effectively control the cost, according to the forecast result of the power network data, make the powerful power planning plan for the relevant department, provide the reliable data source; It is very beneficial to the management of planned electricity, to obtain the situation of demand analysis, to promote the marketization of the electric power industry, to facilitate the dispatch department to arrange ahead of time for the electricity, and not only to benefit the power revenue, It is also very helpful to the promotion of social and public benefits, and it is also very powerful to ensure the stable operation of the power grid. In this paper, a forecasting method of power grid load is proposed, which is based on the grey model. Through continuous improvement, this forecasting method is preferred to weight the index, break the arrangement of the original load, and then study the busbar which is greatly affected by the day type and meteorological conditions. Based on the theory of grey correlation degree, the daily eigenvector is established, and on this basis, some optimal similar days are found. The sample of the last historical load is the bus load of the selected day above. According to the law of far small and near large, the load sample is selected when the load sample is selected. This method not only makes full use of the useful information of the data in the sample, but also reduces the randomness of the data in the sample. By studying the example of Changshou Power supply Branch in Chongqing, this paper fully proves the practicability and scientific nature of the classification of electric power load, and to some extent, The method of load forecasting proposed in this paper has high practical benefit.
【學(xué)位授予單位】:湖北工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TM714;TM715
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 包立公;張瑞祥;;人工神經(jīng)網(wǎng)絡(luò)技術(shù)在電力系統(tǒng)中的應(yīng)用[J];江蘇電機(jī)工程;2010年05期
2 韓丹;張宏波;賈勇;;經(jīng)濟(jì)因素對電量的影響分析與預(yù)測[J];吉林電力;2009年03期
3 康重慶,夏清,張伯明;電力系統(tǒng)負(fù)荷預(yù)測研究綜述與發(fā)展方向的探討[J];電力系統(tǒng)自動化;2004年17期
4 萬國成,任震,田翔;配電網(wǎng)可靠性評估的網(wǎng)絡(luò)等值法模型研究[J];中國電機(jī)工程學(xué)報;2003年05期
,本文編號:1520305
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/1520305.html
最近更新
教材專著