帶有屈曲約束支撐的搖擺墻框架結(jié)構(gòu)抗震性能研究
本文關(guān)鍵詞: 屈曲約束支撐 搖擺墻 抗震性能 剛度比 高階模態(tài) 動(dòng)力分析 出處:《東南大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:目前屈曲約束支撐(BRB)框架的設(shè)計(jì)方法往往控制參數(shù)較多,設(shè)計(jì)過(guò)程較為復(fù)雜,其中最大的難點(diǎn)在于無(wú)法切實(shí)控制所有樓層的BRB同時(shí)屈服并避免薄弱層的出現(xiàn)。而在搖擺墻框架結(jié)構(gòu)中,搖擺墻基本不提供抗側(cè)剛度和耗能能力。基于屈曲約束支撐框架結(jié)構(gòu)設(shè)計(jì)的復(fù)雜性和搖擺墻框架結(jié)構(gòu)的剛度需求和耗能需求,本文提出帶有BRB的搖擺墻框架結(jié)構(gòu)體系,既可以看作是利用搖擺墻控制屈曲約束支撐框架結(jié)構(gòu)的變形模式以保證所有BRB充分發(fā)揮作用,也可以理解為BRB為搖擺墻框架結(jié)構(gòu)提供抗側(cè)剛度和耗能能力。針對(duì)該結(jié)構(gòu)體系本文主要進(jìn)行了以下研究:(1)分析了搖擺桿件的動(dòng)力特性及搖擺墻框架結(jié)構(gòu)的受力特性。將搖擺桿件視作獨(dú)立的彈性構(gòu)件,討論了其時(shí)程分析方法,提出了幾種適用的模態(tài)求解方法,為后續(xù)針對(duì)搖擺桿件的分析提供依據(jù)和方法;谡裥头纸夥ㄓ懻摿藫u擺桿件的恢復(fù)力模型,進(jìn)而通過(guò)受迫諧振響應(yīng)分析,證明搖擺桿件的內(nèi)力受高階模態(tài)影響較大,而位移由一階模態(tài)控制。對(duì)于搖擺墻框架結(jié)構(gòu),根據(jù)均勻離散模型的計(jì)算推導(dǎo)和算例分析,提出了剛度比等主要設(shè)計(jì)參數(shù)。分析了搖擺墻對(duì)結(jié)構(gòu)抗側(cè)剛度影響,當(dāng)框架層剛度和高度分布均勻時(shí),搖擺墻的加入對(duì)原框架基底剪力與頂點(diǎn)位移的比值影響不大,否則會(huì)有影響。搖擺墻在結(jié)構(gòu)中發(fā)揮了傳遞抗側(cè)剛度的作用,從而提高結(jié)構(gòu)整體抗側(cè)能力。(2)提出了帶有BRB的搖擺墻框架結(jié)構(gòu)體系。首先闡述了該結(jié)構(gòu)體系的設(shè)計(jì)理念并分析了其特點(diǎn)和優(yōu)勢(shì),通過(guò)離散模型的計(jì)算推導(dǎo)和算例分析,提出轉(zhuǎn)動(dòng)剛度比等主要設(shè)計(jì)參數(shù)。通過(guò)振型分解法討論了底部帶有BRB的鉸支墻(HWBB)的受迫諧振響應(yīng)并與搖擺桿件作比較,表明隨著轉(zhuǎn)動(dòng)剛度比的增大,一階模態(tài)對(duì)內(nèi)力的影響增大,而高階模態(tài)對(duì)位移的影響增大;贐enchmark模型,比較了該體系與框架、搖擺墻框架、框剪等結(jié)構(gòu)的抗震性能,結(jié)果表明該體系在BRB屈服前類似框剪結(jié)構(gòu),BRB提供附加抗側(cè)剛度并通過(guò)墻體進(jìn)行傳遞,BRB屈服后結(jié)構(gòu)發(fā)生搖擺,墻體控制側(cè)移模式,BRB通過(guò)滯回耗能,充分發(fā)揮了結(jié)構(gòu)各部分抗震能力。(3)采用動(dòng)力分析方法研究了底部帶有BRB的鉸支墻框架(HWBBF)結(jié)構(gòu)體系中的三種剛度比(剛度比、轉(zhuǎn)動(dòng)剛度比和屈服后剛度比.)。無(wú)論是搖擺墻框架結(jié)構(gòu)還是HWBBF結(jié)構(gòu),當(dāng)剛度比較大時(shí),結(jié)構(gòu)側(cè)移模式都更趨向于墻體,因此能得到很好的控制。對(duì)于剛度比很大的HWBBF結(jié)構(gòu),隨著轉(zhuǎn)動(dòng)剛度比的增大,結(jié)構(gòu)側(cè)移模式逐漸由搖擺墻向剪力墻轉(zhuǎn)變,基底剪力和中部彎矩增大,而頂點(diǎn)位移和層間位移角峰值變化較小。當(dāng)不考慮P-△效應(yīng)時(shí),該體系的彈塑性模型與對(duì)應(yīng)的彈性模型基本符合等位移原則。當(dāng)考慮P-△效應(yīng)時(shí),屈服后剛度越小,頂點(diǎn)位移響應(yīng)越大,殘余位移也越大,出現(xiàn)偏振現(xiàn)象,但屈服后剛度比達(dá)到0.1時(shí),結(jié)構(gòu)響應(yīng)幾乎不受P-△效應(yīng)影響。(4)研究了HWBBF結(jié)構(gòu)設(shè)計(jì)方法。根據(jù)幾何關(guān)系推導(dǎo)了BRB和HWBBF的抗震能力基本要素(承載力、剛度、位移、延性)之間的轉(zhuǎn)換關(guān)系,通過(guò)此轉(zhuǎn)換關(guān)系可以將結(jié)構(gòu)設(shè)計(jì)簡(jiǎn)化為構(gòu)件設(shè)計(jì)。對(duì)其中的延性關(guān)系進(jìn)行了分析和驗(yàn)證,表明了本結(jié)構(gòu)整體延性不僅與BRB延性有關(guān),還受轉(zhuǎn)動(dòng)剛度比影響。BRB屈服后墻體底部彎矩不再增長(zhǎng),但墻體中部彎矩仍增長(zhǎng)顯著。根據(jù)屈服后墻體彎矩的分布特點(diǎn),提出了一種計(jì)算墻體彎矩的疊加方法,并進(jìn)行了驗(yàn)證和應(yīng)用,結(jié)果表明該方法可以簡(jiǎn)便但較準(zhǔn)確地估計(jì)墻體彎矩。
[Abstract]:At present, the BRB (BRB) design method of frame are control parameters, the design process is complex, the biggest difficulty lies in unable to effectively control all floors of the BRB at the same time yield and avoid the weak layer. While in the rocking wall frame structure, rocking wall basically do not provide lateral stiffness and energy dissipation capacity. The degree of demand and the energy demand of the BRB and the complexity of rocking wall frame structure frame structure design based on the proposed rocking wall frame structure system with BRB, which can be regarded as the rocking wall frame structure to control the deformation mode of buckling restrained brace to ensure that all give full play to the role of BRB, BRB can also be understood as for rocking wall frame structure to provide lateral stiffness and energy dissipation capacity. The structure of this paper are as follows: (1) analysis of swing rod dynamic characteristic and shake The stress characteristics of pendulum wall frame structure. The swing rod as independent elastic component, discussed the time history analysis method, puts forward several methods for modal analysis, to provide a basis and method for the follow-up analysis of swing bar. The modal decomposition method to discuss the rocking bar based on the restoring force model, and the forced harmonic response analysis, prove the swing member forces by higher modes influence, while the displacement by a modal control. The rocking wall frame structure, according to the analysis and numerical example calculation uniform discrete model, the stiffness ratio of the main design parameters. Analysis of the rocking wall lateral stiffness the influence on the structure, when the frame layer height and stiffness distribution, the rocking wall has little influence on the ratio of the original frame of base shear and top displacement, otherwise it will affect the rocking wall in the structure. The lateral stiffness of transfer play The degree of the effect, so as to improve the lateral capacity. (2) proposed the rocking wall frame structure system with BRB. First elaborated the design concept of the structural system and analyzes its characteristics and advantages, through the calculation of discrete model and example analysis, the rotational stiffness ratio of the main design parameters. The hinged at the bottom of the wall with BRB based on modal decomposition method (HWBB) forced resonant response and rocking bar comparison indicated that along with the rotational stiffness ratio increases, increasing the influence of the first mode of internal force, and the effect of higher order modes of displacement increases. Based on the Benchmark model, comparison the system and the frame rocking wall frame, seismic performance of frame shear structure, the results show that the BRB yield similar before the frame structure of the system, BRB provides additional lateral stiffness and pass through the wall, BRB yield structure of swing, the control side wall Shift mode, BRB through the hysteretic energy, give full play to the various parts of the structure seismic capacity. (3) the hinged frame wall dynamic analysis method to study the bottom with BRB (HWBBF) in the structure system of three kinds of stiffness ratio (stiffness ratio, stiffness ratio and yield stiffness ratio.) no theory is the rocking wall frame structure or HWBBF structure, when the stiffness is large, the structure lateral displacement mode tend to be more walls, so it can be well controlled. The stiffness ratio of HWBBF structure, with the rotational stiffness ratio increases, the structure lateral displacement mode has gradually changed from the wall to the swing shear wall, base shear and central moment increases, and vertex displacement and angular displacement between layers peak changed little. When not considering the effect of P- Delta, elastic model of elastic plastic model and the corresponding system accords with the principle of equal displacement. When considering the P- delta effect, yield stiffness is smaller, the peak displacement The greater the response, the residual displacement increases, appear polarization phenomenon, but the post yield stiffness ratio reaches 0.1, the response of the structure is almost not affected by the P- delta effect. (4) studied the HWBBF structure design method. According to the geometric relations are basic elements of BRB and HWBBF (seismic capacity of bearing capacity and stiffness. Displacement, ductility) relationship between conversion, through this conversion can be simplified as a component design. The structure design of the relationship between ductility is analyzed and verified, indicating that the overall structure is not only related to the ductility ductility of BRB, but also by the rotational stiffness of the wall at the bottom of the moment is no longer growing effect than.BRB yield, but in the middle of the wall the moment still increased significantly. According to the distribution characteristics of the wall bending moment after yielding, a method is proposed for calculating the wall bending moment superposition method, and verified and applied results show that this method is simple but can accurately estimate the wall bending moment.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU352.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊樹標(biāo);謝波濤;余丁浩;魏志濤;;內(nèi)嵌式框架-搖擺墻結(jié)構(gòu)振動(dòng)臺(tái)試驗(yàn)研究分析[J];建筑科學(xué);2014年09期
2 徐佳琦;呂西林;;基于能量的框架-搖擺墻結(jié)構(gòu)與框架-剪力墻結(jié)構(gòu)地震反應(yīng)分析對(duì)比[J];建筑結(jié)構(gòu);2013年S2期
3 劉桂;吳京;;屈曲約束支撐剛度與屈服力匹配關(guān)系研究[J];世界地震工程;2013年02期
4 杜永峰;武大洋;;一種輕型消能搖擺架近斷層地震響應(yīng)減震分析[J];土木工程學(xué)報(bào);2013年S2期
5 梁仁杰;吳京;王春林;雷雪辰;;考慮P-Δ效應(yīng)的結(jié)構(gòu)地震倒塌及影響因素分析[J];建筑結(jié)構(gòu)學(xué)報(bào);2013年02期
6 梁仁杰;吳京;王春林;;P-Δ效應(yīng)下滯回特征對(duì)結(jié)構(gòu)抗倒塌能力的影響[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
7 曹海韻;潘鵬;吳守君;葉列平;曲哲;;框架-搖擺墻結(jié)構(gòu)體系中連接節(jié)點(diǎn)試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2012年12期
8 陸偉東;;基于MATLAB的地震模擬振動(dòng)臺(tái)試驗(yàn)的數(shù)據(jù)處理[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
9 曲哲;和田章;葉列平;;搖擺墻在框架結(jié)構(gòu)抗震加固中的應(yīng)用[J];建筑結(jié)構(gòu)學(xué)報(bào);2011年09期
10 周穎;呂西林;;搖擺結(jié)構(gòu)及自復(fù)位結(jié)構(gòu)研究綜述[J];建筑結(jié)構(gòu)學(xué)報(bào);2011年09期
相關(guān)博士學(xué)位論文 前1條
1 曲哲;搖擺墻—框架結(jié)構(gòu)抗震損傷機(jī)制控制及設(shè)計(jì)方法研究[D];清華大學(xué);2010年
相關(guān)碩士學(xué)位論文 前5條
1 余丁浩;基于動(dòng)力分析的框架—搖擺墻結(jié)構(gòu)受力特性研究[D];河北工程大學(xué);2014年
2 武大洋;近場(chǎng)地震作用下輕型自復(fù)位消能搖擺剛架減震性能分析[D];蘭州理工大學(xué);2013年
3 趙瑛;防屈曲支撐框架設(shè)計(jì)理論研究[D];清華大學(xué);2009年
4 賈佰科;屈曲約束支撐高層鋼結(jié)構(gòu)的抗震性能及設(shè)計(jì)方法研究[D];西安建筑科技大學(xué);2008年
5 劉建彬;防屈曲支撐及防屈曲支撐鋼框架設(shè)計(jì)理論研究[D];清華大學(xué);2005年
,本文編號(hào):1478344
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1478344.html