沿海地區(qū)高層建筑抗風(fēng)現(xiàn)場實(shí)測研究
本文關(guān)鍵詞: 高層建筑 現(xiàn)場實(shí)測 風(fēng)特性 風(fēng)壓 風(fēng)洞試驗(yàn) 風(fēng)致響應(yīng) 玻璃幕墻 出處:《湖南大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:由于輕質(zhì)高強(qiáng)材料的應(yīng)用使得現(xiàn)代高層建筑呈現(xiàn)出高柔和低阻尼特性,高層建筑在強(qiáng)風(fēng)中的振動(dòng)有可能引起結(jié)構(gòu)的塑性變形,尤其是圍護(hù)結(jié)構(gòu)的破壞時(shí)有發(fā)生,強(qiáng)風(fēng)引起的風(fēng)荷載往往是此類建筑結(jié)構(gòu)設(shè)計(jì)的主要控制荷載。我國每年都有臺(tái)風(fēng)在東南沿海地區(qū)登陸,造成大量的房屋損壞和其他結(jié)構(gòu)物的破壞,也威脅著沿海地區(qū)高層建筑的安全性及其居住者的舒適性。因此,有必要對(duì)沿海地區(qū)高層建筑在臺(tái)風(fēng)作用下的風(fēng)效應(yīng)進(jìn)行系統(tǒng)的研究,F(xiàn)場實(shí)測是結(jié)構(gòu)抗風(fēng)研究的主要方法之一。本文基于廈門沿海的三棟高層建筑A、B和C建立了抗風(fēng)現(xiàn)場實(shí)測的基地,并對(duì)高層建筑在臺(tái)風(fēng)作用下的風(fēng)效應(yīng)開展長期、系統(tǒng)的的抗風(fēng)現(xiàn)場實(shí)測研究,F(xiàn)場實(shí)測的內(nèi)容包括建筑頂部的風(fēng)場實(shí)測、建筑表面的風(fēng)壓實(shí)測、不同樓層的加速度響應(yīng)實(shí)測,以及對(duì)玻璃幕墻的中空玻璃的風(fēng)致應(yīng)力測量。經(jīng)過幾年的臺(tái)風(fēng)監(jiān)測獲得了大量的實(shí)測資料,并形成了一套較為完善的抗風(fēng)現(xiàn)場實(shí)測研究方法;谖宕闻_(tái)風(fēng)風(fēng)場的實(shí)測數(shù)據(jù),分析了高層建筑頂部的風(fēng)特性,包括平均風(fēng)速風(fēng)向、湍流度、陣風(fēng)因子、湍流積分尺度和脈動(dòng)風(fēng)速譜等。其中,在臺(tái)風(fēng)“天兔”中對(duì)三棟建筑頂部的風(fēng)場進(jìn)行了同步實(shí)測,并具體的對(duì)比研究了三棟建筑頂部風(fēng)特性和風(fēng)速相關(guān)性。臺(tái)風(fēng)實(shí)測得到的風(fēng)速時(shí)程往往具有非平穩(wěn)性。本文改進(jìn)了基于非平穩(wěn)風(fēng)模型的風(fēng)特性方法中對(duì)時(shí)變平均風(fēng)速的提取方法,對(duì)實(shí)測風(fēng)場數(shù)據(jù)采用非平穩(wěn)風(fēng)模型分析了其風(fēng)特性,其結(jié)果表明非平穩(wěn)風(fēng)模型對(duì)實(shí)測風(fēng)速的湍流度的估計(jì)更加合理;谠诮ㄖ﨏的第33層和第17層的多點(diǎn)風(fēng)壓實(shí)測數(shù)據(jù),分析了各測點(diǎn)的風(fēng)壓系數(shù)、脈動(dòng)風(fēng)壓的概率分布特性、峰值因子、以及脈動(dòng)風(fēng)壓的功率譜和相關(guān)性。研究表明:當(dāng)選取樣本的來流風(fēng)向比較平穩(wěn)時(shí),各10min子樣本風(fēng)壓系數(shù)間的差異很小,測點(diǎn)所處的位置及脈動(dòng)風(fēng)壓的概率分布特性對(duì)風(fēng)壓系數(shù)的影響較大;在保證率相同的情況下,實(shí)測風(fēng)壓的峰值因子大于基于高斯分布假設(shè)的峰值因子;迎風(fēng)面測點(diǎn)脈動(dòng)風(fēng)壓的氣動(dòng)導(dǎo)納函數(shù)與Kawai提出的指數(shù)函數(shù)曲線的衰減規(guī)律相吻合,迎風(fēng)面測點(diǎn)的相關(guān)系數(shù)大于背風(fēng)面,其頻率平均的相干函數(shù)值與測點(diǎn)間距離的關(guān)系可以由一組的指數(shù)函數(shù)來模擬。通過對(duì)建筑C在A類和B類風(fēng)場條件下的風(fēng)洞試驗(yàn)研究,對(duì)建筑表面的風(fēng)壓分布特性進(jìn)行了分析,給出了兩類地貌條件下得到的建筑各面的體型系數(shù)。通過對(duì)比風(fēng)洞試驗(yàn)與實(shí)測風(fēng)壓的結(jié)果,發(fā)現(xiàn)兩者所獲得的平均風(fēng)壓系數(shù)結(jié)果基本一致,但現(xiàn)場實(shí)測中部分測點(diǎn)的脈動(dòng)性很強(qiáng),可能產(chǎn)生較大的峰值風(fēng)壓系數(shù);谂_(tái)風(fēng)作用下在建筑C的6個(gè)樓層的風(fēng)致加速度響應(yīng)的現(xiàn)場實(shí)測,獲得了該結(jié)構(gòu)的前6階自振頻率和結(jié)構(gòu)在兩個(gè)方向上的前兩階平動(dòng)振型,并分析了加速度響應(yīng)的均方根與平均風(fēng)速的關(guān)系。本文建立了合理的三維有限元模型,其模態(tài)分析的結(jié)果與實(shí)測結(jié)果很接近。將模擬得到的A類地貌下的二維風(fēng)場作為結(jié)構(gòu)的順風(fēng)向脈動(dòng)風(fēng)荷載激勵(lì)施加到有限元模型上,通過時(shí)程分析的方法得到了結(jié)構(gòu)的順風(fēng)向風(fēng)致響應(yīng),其結(jié)果與規(guī)范方法的計(jì)算結(jié)果比較吻合,與實(shí)測的加速度響應(yīng)的結(jié)果也很接近。中空玻璃幕墻是高層建筑中較常采用的外圍護(hù)結(jié)構(gòu),中空玻璃在風(fēng)荷載作用下主要發(fā)生彎曲變形。本文首先利用幕墻抗風(fēng)壓檢測設(shè)備對(duì)中空玻璃幕墻試件進(jìn)行了風(fēng)壓加載試驗(yàn),然后測量了在臺(tái)風(fēng)作用下建筑C幕墻中空玻璃的風(fēng)致應(yīng)力,重點(diǎn)分析了中空玻璃在風(fēng)壓作作用下的風(fēng)致應(yīng)力。結(jié)合中空玻璃單元的構(gòu)造和承載特點(diǎn),通過理論分析提出了中空玻璃單元受彎承載性能分析的簡化方法和有限元分析方法。
[Abstract]:Due to the application of lightweight materials because of the modern high-rise building exhibits high soft and low damping, vibration of high-rise buildings in strong winds are likely to cause plastic deformation of the structure, especially the structure of the damage occurred, the wind load caused by strong winds is usually the main control load design of these structures. There is a typhoon landing in the southeast coastal area of our country every year, causing a lot of damage to housing and other damage to structure, high-rise buildings also threaten the safety of coastal area and the comfort of the occupants. Therefore, it is necessary to carry out systematic research on wind effects on tall buildings in coastal areas under typhoon is one of the main field. Study on method of structures. In this paper, the coast of Xiamen in three high-rise buildings based on A, B and C established a wind field test base, and the high-rise building under typhoon wind The effect of long-term, the wind field measurement system research. The measured wind field measurement includes the pressure building on top of a building, the surface of the measured responses of different floors and wind-induced acceleration, hollow glass of the glass curtain wall stress measurement. After several years of typhoon monitoring and obtained a large amount of measured data, and formed a set of more perfect wind field measurement method. The measured data of five typhoon wind field based on the analysis of the characteristics of the wind at the top of the high-rise buildings, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale and wind spectrum. Among them, the typhoon Usagi in wind field the top three buildings were synchronously measured, and the comparative study of the three buildings at the top of the wind characteristics and wind velocity correlation. Typhoon measured time history is non-stationary. This change The extraction method of time synchronization method of non-stationary wind characteristics of mean wind speed wind model based on the measured wind data using non-stationary wind model analysis of the wind characteristics, the results show that the estimation of non stationary wind turbulence model of measured wind speed is more reasonable. Multi point pressure measurement data in building C the thirty-third layer and seventeenth layer based on the analysis of the wind pressure coefficient of each point, the probability distribution characteristics of fluctuating wind pressure, peak factor, and the fluctuating wind pressure power spectrum and the correlation. The results show that: when the sample of the flow direction is relatively stable, the difference between the 10min sub sample pressure coefficient is very small, the influence of probability the location and distribution characteristics of fluctuating wind pressure measuring points located on the wind pressure coefficient is relatively large; in the guarantee rate under the same condition, the peak peak factor is greater than the pressure factor based on the Gauss distribution; windward point fluctuation The attenuation law of wind aerodynamic admittance function and exponential function curve proposed by Kawai coincide, windward correlation coefficient is larger than the leeward side, the coherence function relationship with distance measuring points by a set of exponential function to simulate the average frequency. Through the construction of C in a class and B class wind under the conditions of wind tunnel test, wind pressure distribution on the surface of the architecture is analyzed, two kinds of landform conditions were given the building shape coefficient. Through the comparison with the measured wind pressure wind tunnel test results, the results found that the average wind pressure coefficient are obtained basically the same, but in the field of measuring pulse the point is very strong, may produce a larger peak wind pressure coefficient. Field test of wind-induced acceleration under typhoon C in building 6 floors based on response, obtained the structure of the first 6 natural frequencies. The direction of the two of the first two order translation mode, and analyzes the relationship between the RMS acceleration response and average wind speed. In this paper, a 3-D finite element model was established, the modal analysis results and the test results are very close. The simulation results of a two-dimensional terrain wind field structure as the wind the fluctuating wind load excitation applied to the finite element model, through the method of time history analysis by wind structure wind induced responses, the results of calculation results agree well with the standard method, the response and the measured acceleration results is very close. Hollow glass curtain wall retaining structure is often used in high-rise building. Hollow glass under wind load mainly bending deformation. This paper uses wall anti wind pressure testing equipment for hollow glass curtain wall specimens of wind loading test, and then measured in typhoon Building C hollow glass curtain wall of wind stress, focus on the analysis of the hollow glass in the wind as the wind stress. And combined with the characteristics of bearing structure of hollow glass unit, is presented through theoretical analysis. The simplified method and the finite element analysis of flexural bearing performance of insulating glass unit.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU973.213
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧慎康,周必成;脈動(dòng)風(fēng)壓的相似模擬[J];太陽能學(xué)報(bào);1989年03期
2 戴賢揚(yáng),周必成,關(guān)群;脈動(dòng)風(fēng)壓的再現(xiàn)模擬及實(shí)驗(yàn)[J];工程力學(xué);1993年02期
3 張慶利;一種建筑物脈動(dòng)風(fēng)壓測量系統(tǒng)[J];南京航空航天大學(xué)學(xué)報(bào);1999年02期
4 謝壯寧,顧明;脈動(dòng)風(fēng)壓測壓系統(tǒng)的優(yōu)化設(shè)計(jì)[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年02期
5 黃翔;顧明;;懸臂弧形挑篷脈動(dòng)風(fēng)壓的概率特征[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年09期
6 王鶯歌;李正農(nóng);;流場物理特性在脈動(dòng)風(fēng)壓系數(shù)估算中的應(yīng)用[J];力學(xué)與實(shí)踐;2012年03期
7 葛楠;周錫元;侯愛波;;建筑結(jié)構(gòu)橫向脈動(dòng)風(fēng)壓譜密度函數(shù)的分析計(jì)算[J];建筑科學(xué);2006年01期
8 謝壯寧,倪振華,石碧青;脈動(dòng)風(fēng)壓測壓管路系統(tǒng)的動(dòng)態(tài)特性分析[J];應(yīng)用力學(xué)學(xué)報(bào);2002年01期
9 楊春秋,劉大全,曲乃泗;隨機(jī)脈動(dòng)風(fēng)壓下局部動(dòng)力效應(yīng)[J];大連大學(xué)學(xué)報(bào);2002年04期
10 曲淑英,王心鍵,楊春秋;脈動(dòng)風(fēng)壓下局部動(dòng)力效應(yīng)研究[J];船舶力學(xué);2005年01期
相關(guān)會(huì)議論文 前4條
1 張亮亮;李正良;彭新宇;王奇志;;建筑物脈動(dòng)風(fēng)壓測量技術(shù)[A];第十二屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅱ冊(cè)[C];2003年
2 樓文娟;陳勇;孫炳楠;;上海國際會(huì)議中心脈動(dòng)風(fēng)壓風(fēng)洞試驗(yàn)研究[A];第八屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅱ卷)[C];1999年
3 謝壯寧;石碧青;倪振華;;測壓傳壓管路系統(tǒng)動(dòng)態(tài)特性的試驗(yàn)分析[A];2004全國結(jié)構(gòu)風(fēng)工程實(shí)驗(yàn)技術(shù)研討會(huì)論文集[C];2004年
4 鄧華東;;脈動(dòng)風(fēng)壓下多棱插接式鋼管塔TMD振動(dòng)控制[A];第三屆全國防震減災(zāi)工程學(xué)術(shù)研討會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 羅疊峰;沿海地區(qū)高層建筑抗風(fēng)現(xiàn)場實(shí)測研究[D];湖南大學(xué);2015年
2 朱偉亮;基于大渦模擬的CFD入口條件及脈動(dòng)風(fēng)壓模擬研究[D];北京交通大學(xué);2011年
3 李朝;近地湍流風(fēng)場的CFD模擬研究[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前6條
1 鄢長偉;大跨結(jié)構(gòu)健康監(jiān)測中脈動(dòng)風(fēng)壓時(shí)程識(shí)別[D];哈爾濱工業(yè)大學(xué);2006年
2 吳丹;脈動(dòng)風(fēng)壓非高斯特性及其模擬[D];哈爾濱工業(yè)大學(xué);2012年
3 周陽;建筑物脈動(dòng)風(fēng)壓場大渦模擬入流邊界條件的生成研究[D];廣東工業(yè)大學(xué);2012年
4 許楠;體育場懸挑屋蓋的脈動(dòng)風(fēng)壓頻譜特性研究[D];哈爾濱工業(yè)大學(xué);2009年
5 王友武;廣州塔高空風(fēng)場特性與風(fēng)壓預(yù)測[D];湖南大學(xué);2012年
6 姚志東;基于數(shù)值模擬方法的大跨度結(jié)構(gòu)表面風(fēng)荷載的計(jì)算與分析[D];北京交通大學(xué);2008年
,本文編號(hào):1453978
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1453978.html