淘寶推薦策略對(duì)消費(fèi)者購(gòu)買意愿影響研究
[Abstract]:Nowadays, online shopping has become a common way of shopping, and consumers in the online shopping personalized features are increasingly obvious. With the maturing of information technology, the Internet has entered the stage of rapid development, consumers are facing from the original lack of information to information overload. For online shopping platforms and merchants, it is very difficult to make their commodity information stand out from the mass of information and be obtained by consumers. Personalized recommendation technology appears and develops gradually in this kind of reality, and has been used by various e-commerce websites to provide personalized product recommendation to different users. Based on this background, this paper selects Taobao, the largest B2C shopping platform in China, as the research object, and selects the four most representative recommendations of Taobao. This paper probes into the internal mechanism between the personalized recommendation strategy provided by Taobao and the consumer's willingness to buy. This paper analyzes and combs the concepts of personalized recommendation, perceived recommendation quality, perceived risk, purchase cost, purchase intention and so on at home and abroad. This paper puts forward the model and hypothesis of Taobao personalized recommendation strategy to promote consumers' willingness to buy, and determines the measurement dimension of each factor. On this basis, this paper designed the questionnaire with mature scale, completed the data collection by questionnaire method, and used the statistical software SPSS20.0 for descriptive analysis, correlation analysis and regression analysis to verify the hypothesis of the model. The results of data analysis show that the four personalized recommendation strategies provided by Taobao all play a positive role in promoting consumers' purchase intention, but the effect is slightly different, and the purchase cost plays an intermediary role. Perceived costs act as a regulator. Finally, this paper discusses the results of data analysis, and puts forward some suggestions on the marketing management of Taobao and online retailers, which will be of practical significance.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F724.6;F713.55
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭春東;盧奎宇;;電子商務(wù)個(gè)性化推薦對(duì)消費(fèi)者的影響——基于推薦時(shí)機(jī)與推薦集合的視角[J];大連海事大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2016年06期
2 趙保國(guó);成穎慧;;網(wǎng)絡(luò)團(tuán)購(gòu)中消費(fèi)者購(gòu)買意愿影響因素研究[J];中央財(cái)經(jīng)大學(xué)學(xué)報(bào);2013年10期
3 肖海清;;社交搜索的應(yīng)用分析——以Facebook社交圖譜搜索為例[J];華中師范大學(xué)研究生學(xué)報(bào);2013年03期
4 張秀偉;何克清;王健;劉建曉;;Web服務(wù)個(gè)性化推薦研究綜述[J];計(jì)算機(jī)工程與科學(xué);2013年09期
5 李亞男;王奰;康麗婷;;影響個(gè)性化推薦系統(tǒng)的用戶采納的因素[J];人類工效學(xué);2013年02期
6 景民昌;張芹;唐弟官;;協(xié)同過(guò)濾系統(tǒng)中基于種子集評(píng)分的新用戶冷啟動(dòng)推薦研究[J];圖書情報(bào)工作;2013年05期
7 金淳;張一平;;基于Agent的顧客行為及個(gè)性化推薦仿真模型[J];系統(tǒng)工程理論與實(shí)踐;2013年02期
8 李想;周良;;基于用戶語(yǔ)義相似性的協(xié)同過(guò)濾推薦算法[J];機(jī)械設(shè)計(jì)與制造工程;2013年01期
9 朱文婷;;個(gè)性化推薦技術(shù)在電子商務(wù)CRM中的應(yīng)用[J];科技廣場(chǎng);2012年03期
10 王國(guó)霞;劉賀平;;個(gè)性化推薦系統(tǒng)綜述[J];計(jì)算機(jī)工程與應(yīng)用;2012年07期
相關(guān)碩士學(xué)位論文 前8條
1 李哲;網(wǎng)絡(luò)購(gòu)物交易成本與購(gòu)買意愿的復(fù)雜關(guān)系研究[D];昆明理工大學(xué);2016年
2 付曉悅;個(gè)性化推薦系統(tǒng)對(duì)消費(fèi)者購(gòu)買意愿的影響研究[D];河南財(cái)經(jīng)政法大學(xué);2016年
3 馮超;電子商務(wù)個(gè)性化推薦的用戶信息采納影響因素研究[D];華中師范大學(xué);2015年
4 王樂;網(wǎng)購(gòu)交易成本對(duì)消費(fèi)者購(gòu)買意愿的影響研究[D];東華大學(xué);2014年
5 宋輝;電子商務(wù)推薦系統(tǒng)用戶采納影響因素研究[D];哈爾濱工業(yè)大學(xué);2011年
6 鄭麗鳳;電子商務(wù)環(huán)境下交易成本對(duì)購(gòu)買意愿的影響分析[D];江南大學(xué);2009年
7 姚學(xué)剛;人類信息接受行為的動(dòng)因、過(guò)程及影響因素研究[D];北京大學(xué);2008年
8 葉群來(lái);網(wǎng)絡(luò)推薦系統(tǒng)的營(yíng)銷研究[D];西南財(cái)經(jīng)大學(xué);2008年
,本文編號(hào):2367884
本文鏈接:http://sikaile.net/jingjilunwen/guojimaoyilunwen/2367884.html