大數(shù)據(jù)背景下網(wǎng)絡(luò)中介公司逆向施診研究
[Abstract]:With the rapid development of global network and information technology, the methods and modes of enterprise diagnosis are constantly breaking through and innovating. The arrival of "big data" era has further accelerated the competition among enterprises, which puts forward new requirements for enterprises. At the same time, it also brings new opportunities and challenges for the enterprise diagnosis industry. On the basis of summing up the theories of enterprise diagnosis, key success factors, intermediary theory, reverse diagnosis theory, and big data's theory, this paper summarizes the relevant literature and research results. Under big data's background, carries on the reverse diagnosis research to the network intermediary company. This article takes the network intermediary company as the research object, under the big data background, carries on the analysis to the network intermediary company reverse diagnosis process data, divides the reverse diagnosis data into three dimensions: basic dimension, adjustment dimension, broad dimension. According to the analysis of three dimension data, the application of big data technology can effectively mine and extract the final consumer's demand, and improve the feasibility and effectiveness of the reverse diagnosis scheme. At the same time, on the basis of three data dimensions, the reverse diagnosis process under the background of big data is set up, and the key success factors of the network intermediary company are analyzed, and the literature induction method is used. Delphi method and Analytic hierarchy process (AHP) are used to design the critical success factors model of reverse diagnosis of network intermediary companies under the background of big data, and the key success factors of reverse diagnosis of network intermediary companies are determined. Finally, taking the real estate network intermediary A company as an example, the paper firstly analyzes the three dimension data of A company reverse diagnosis, and then builds the reverse diagnosis process suitable for A company. Finally, combined with big data background, the key success factors of reverse diagnosis of network intermediary company to determine the theme of A company, and analyze the solution to the problem.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F724.6
【參考文獻】
相關(guān)期刊論文 前10條
1 呂睿;范玉順;黃雙喜;白冰;羅福;倪亞宇;;面向客戶價值的保險行業(yè)數(shù)據(jù)管理框架與方法[J];計算機應(yīng)用;2016年S2期
2 閻志遠;翁nf元;戴琳琳;楊立鵬;;鐵路客運大數(shù)據(jù)平臺的數(shù)據(jù)采集技術(shù)研究[J];鐵路計算機應(yīng)用;2016年09期
3 程小恩;魏勇;;數(shù)據(jù)采集系統(tǒng)在中醫(yī)藥健康大數(shù)據(jù)中的應(yīng)用[J];中國數(shù)字醫(yī)學(xué);2016年09期
4 王海峰;盧小倩;;大數(shù)據(jù)驅(qū)動下傳統(tǒng)零售業(yè)的精準營銷——以朝陽大悅城為例[J];產(chǎn)業(yè)與科技論壇;2016年17期
5 李茜;;大數(shù)據(jù)時代的金融中介理論創(chuàng)新研究[J];當代經(jīng)濟;2016年23期
6 孫洪池;林正杰;;基于大數(shù)據(jù)的B2C網(wǎng)絡(luò)精準營銷應(yīng)用研究——以中國零售商品型企業(yè)為例[J];全國商情;2016年12期
7 劉志霞;;大數(shù)據(jù)在旅游管理中的應(yīng)用探討研究[J];廣東技術(shù)師范學(xué)院學(xué)報;2016年04期
8 孫成嬌;;大數(shù)據(jù)時代的互聯(lián)網(wǎng)金融創(chuàng)新及傳統(tǒng)銀行轉(zhuǎn)型[J];中小企業(yè)管理與科技(下旬刊);2016年01期
9 資武成;劉超智;;大數(shù)據(jù)背景下農(nóng)產(chǎn)品供應(yīng)鏈的組織服務(wù)創(chuàng)新研究[J];農(nóng)村經(jīng)濟與科技;2015年11期
10 康玉函;張增強;徐龍秀;;基于大數(shù)據(jù)背景的電力行業(yè)數(shù)據(jù)應(yīng)用分析[J];科技與企業(yè);2015年21期
相關(guān)碩士學(xué)位論文 前9條
1 何金花;效用價值下關(guān)鍵成功因素與施診背景組合研究[D];廣西大學(xué);2015年
2 葛維;基于云計算的房地產(chǎn)中介管理系統(tǒng)的分析設(shè)計研究[D];西安科技大學(xué);2014年
3 吳凡;企業(yè)成本管理診斷研究[D];中國海洋大學(xué);2014年
4 周川雯;企業(yè)VFB中關(guān)鍵成功因素識別及施診主題選擇研究[D];廣西大學(xué);2013年
5 鄒翔;企業(yè)逆向施診的基本形式與重點環(huán)節(jié)研究[D];廣西大學(xué);2012年
6 李璐;面向網(wǎng)絡(luò)中介的信息共享激勵系統(tǒng)動力學(xué)研究[D];武漢理工大學(xué);2012年
7 游閩;非對稱網(wǎng)絡(luò)效應(yīng)下的網(wǎng)絡(luò)中介業(yè)市場結(jié)構(gòu)研究[D];大連理工大學(xué);2009年
8 李欣;上海市科技中介服務(wù)體系的系統(tǒng)分析[D];上海交通大學(xué);2007年
9 朱少英;管理診斷方案生成過程的主要邏輯環(huán)節(jié)分析研究[D];廣西大學(xué);2004年
,本文編號:2248480
本文鏈接:http://sikaile.net/jingjilunwen/guojimaoyilunwen/2248480.html