中國A股市場多因素選股模型實證分析
[Abstract]:With the development of information technology and the maturation of Chinese capital market, quantitative investment has been paid more and more attention in China. Compared with the traditional investment mode, quantitative investment has unique advantages. It not only breaks the limit of traditional investment scope, but also overcomes the influence of investors' subjective factors. It is a more systematic and scientific investment model. In the quantitative investment strategy, multi-factor stock selection is favored by institutional investors because of its large market capacity and stable returns. This paper tries to build a multi-factor stock selection model in accordance with the characteristics of A-share market under this background. With a view to a sustained and stable victory over the market. In this paper, based on the theory of multi-factors, we construct a multi-factor stock selection model by multivariate linear regression between stock returns and some risk factors. To be more specific, we first tested 64 basic indicators that may affect the returns of the stock market. By testing, we screened out 39 significant indicators, and through dimensionality reduction, we got scale, value, growth. Financial quality, earnings, operations, momentum, liquidity and volatility are nine style factors. In order to avoid the impact of industry factors, we also add industry factors, and build our multi-factor stock selection model together with style factors. We find that our multi-factor strategy can significantly overcome the market, in the six-year retroactive period, the annualized excess return is as high as 26.8.Even excluding the impact of the structural bull market in 2013, the strategy portfolio can still reach 22.4% annualized excess return. In addition, we analyze the model year by year and market stage, and we find that in bull market, bear market or shock market, the strategy combination can obviously beat the market index. And shock market performance is much better than the bull market and bear market performance. Of course, there are some shortcomings in our model, for example, there are several large recoveries in the back test, and the risk index does not completely cover all the factors that may affect the stock returns, which will also be the focus of our further research.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:F832.51
【相似文獻】
相關(guān)期刊論文 前10條
1 杜海;;多元線性回歸在用戶消費研究中的應(yīng)用[J];瀘州職業(yè)技術(shù)學(xué)院學(xué)報;2012年03期
2 裴植,李春英;逐步多元線性回歸計算程序[J];預(yù)測;1986年05期
3 馮天祥;多元線性回歸最小二乘法及其經(jīng)濟分析[J];經(jīng)濟師;2003年11期
4 李勃;;多元線性回歸算法在雙定戶定稅中的應(yīng)用[J];福建電腦;2008年03期
5 勇國溫;孟旭光;;多元線性回歸在鉆探成本預(yù)測和控制中的應(yīng)用[J];預(yù)測;1990年04期
6 張曉東;決策支持系統(tǒng)中多元線性回歸技術(shù)的應(yīng)用[J];大連大學(xué)學(xué)報;1998年05期
7 張鵬輝,孫晚華;多元線性回歸在影響因素分析中的應(yīng)用[J];技術(shù)經(jīng)濟;2000年07期
8 王振友;陳莉娥;;多元線性回歸統(tǒng)計預(yù)測模型的應(yīng)用[J];統(tǒng)計與決策;2008年05期
9 陳逸陶;蔣艷;徐穎;;基于逐步懲罰的動態(tài)多元線性回歸預(yù)測模型[J];統(tǒng)計與決策;2008年12期
10 喬亮亮;;多元線性回歸預(yù)測法在服裝制造中的應(yīng)用[J];長江大學(xué)學(xué)報(自然科學(xué)版)理工卷;2010年01期
相關(guān)會議論文 前2條
1 石偉;王剛;劉愛華;武立華;;多元線性回歸在密山井水位影響因素分析的應(yīng)用[A];2013年地震流體專業(yè)委員會學(xué)術(shù)年會會議摘要[C];2013年
2 陳向軍;陳金波;;湖北省流通業(yè)競爭力影響因素測評分析[A];中部崛起與現(xiàn)代服務(wù)業(yè)——第二屆中部商業(yè)經(jīng)濟論壇論文集[C];2008年
相關(guān)碩士學(xué)位論文 前5條
1 劉軍;基于股票市價與會計信息指標的多元線性回歸股票定價模型研究[D];西南財經(jīng)大學(xué);2009年
2 曾昭霞;貴州灣河二期粉煤灰堆場巖溶滲漏污染研究[D];貴州大學(xué);2009年
3 王靜;具有輸入故障自適應(yīng)能力的在線智能建模[D];廈門大學(xué);2007年
4 曹春曉;中國A股市場多因素選股模型實證分析[D];南京大學(xué);2014年
5 黃東盛;公眾心理預(yù)期的哈爾濱市保障性住房建設(shè)標準研究[D];哈爾濱工業(yè)大學(xué);2011年
,本文編號:2145693
本文鏈接:http://sikaile.net/jingjilunwen/guojijinrong/2145693.html