天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于集成經(jīng)驗(yàn)?zāi)B(tài)分解的投資者情緒與股價(jià)波動(dòng)的關(guān)系研究

發(fā)布時(shí)間:2018-03-13 09:10

  本文選題:投資者情緒 切入點(diǎn):股價(jià) 出處:《華南理工大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文


【摘要】:投資者情緒作為行為金融理論的一大分支,是反映投資者心理的重要因素,對(duì)證券市場(chǎng)的運(yùn)行和發(fā)展起著非常重要的作用。但目前有關(guān)情緒對(duì)股市影響的研究,多采用傳統(tǒng)計(jì)量模型,僅從時(shí)間維度進(jìn)行了分析。在此背景下,從時(shí)間域和頻率域相結(jié)合的角度深入分析投資者情緒變化與股票價(jià)格波動(dòng)的影響關(guān)系,或許有新的發(fā)現(xiàn)。 基于此,本文將一種新的數(shù)據(jù)分析方法——集成經(jīng)驗(yàn)?zāi)B(tài)分解(Ensemble EmpiricalMode Decomposition,EEMD)引入到該問(wèn)題的研究中。從多尺度的角度出發(fā),運(yùn)用EEMD方法分別將投資者情緒和股價(jià)序列分解成若干個(gè)獨(dú)立的、不同尺度的本征模態(tài)函數(shù)(Intrinsic Mode Function,IMF)分量和一個(gè)殘余項(xiàng),分別提取出序列在不同時(shí)間尺度下的波動(dòng)特征。然后將得到的IMFs按照高低頻重構(gòu)為序列的短期波動(dòng)項(xiàng),中期重大事件影響項(xiàng),保留殘余項(xiàng)作為序列的長(zhǎng)期趨勢(shì)項(xiàng),再結(jié)合計(jì)量模型探討了在不同時(shí)間尺度下投資者情緒對(duì)股價(jià)的總體影響效應(yīng)和橫截面影響效應(yīng)。 實(shí)證結(jié)果表明,就總體效應(yīng)而言,投資者情緒與股指價(jià)格波動(dòng)在不同時(shí)間尺度下呈現(xiàn)出不同的波動(dòng)關(guān)系。從短期波動(dòng)來(lái)看,投資者情緒對(duì)上證綜指價(jià)格波動(dòng)具有顯著正向影響;中期投資者情緒波動(dòng)領(lǐng)先于上證綜指價(jià)格波動(dòng),而長(zhǎng)期則轉(zhuǎn)變?yōu)樯献C綜指價(jià)格領(lǐng)先投資者情緒波動(dòng)。就橫截面效應(yīng)而言,不同特征股票組合對(duì)投資者情緒的敏感度不同。從短期來(lái)看,除了低市盈率股票以外,其他橫截面股指價(jià)格序列均顯著受到市場(chǎng)投資者情緒的影響,且小盤(pán)股、低價(jià)股、高市盈率股票、績(jī)優(yōu)股及低市凈率股票對(duì)市場(chǎng)投資者情緒更為敏感;從中長(zhǎng)期來(lái)看,則表現(xiàn)為低價(jià)股、高市盈率股票、績(jī)優(yōu)股及低市凈率股票對(duì)市場(chǎng)投資者情緒更為敏感;且在中長(zhǎng)期下投資者情緒領(lǐng)先于價(jià)差序列的波動(dòng),這表明投資者情緒對(duì)股票市場(chǎng)橫截面價(jià)格具有一定的解釋能力,說(shuō)明投資者情緒對(duì)資產(chǎn)價(jià)格的波動(dòng)產(chǎn)生了橫截面的影響,且這種影響具有顯著的差異性。
[Abstract]:As a branch of behavioral finance theory, investor sentiment is an important factor reflecting investor psychology and plays a very important role in the operation and development of securities market. The traditional econometric model is mostly used, only from the time dimension. Under this background, it is possible to analyze the relationship between investor sentiment change and stock price fluctuation from the angle of time domain and frequency domain, and there may be some new findings. Based on this, a new data analysis method-Ensemble EmpiricalMode decomposition (EEMD) is introduced to the study of this problem. The EEMD method is used to decompose investor sentiment and stock price sequences into several independent, different scale intrinsic Mode function (IMF) components and a residual term. After extracting the fluctuation characteristics of the sequence at different time scales, the obtained IMFs is reconstructed into the short-term fluctuation term of the sequence according to the high and low frequency, the influence item of the medium-term major event, and the residual term as the long-term trend item of the sequence. Combined with the econometric model, the overall and cross-sectional effects of investor sentiment on stock price in different time scales are discussed. The empirical results show that, as far as the overall effect is concerned, investor sentiment and stock index price fluctuate in different time scales. Investor sentiment has a significant positive impact on the price volatility of the Shanghai Composite Index. In the case of cross-sectional effects, investor sentiment volatility in the medium term is ahead of the price fluctuation in the Shanghai Composite Index, while in the long run it has turned into a leading investor sentiment fluctuation in the Shanghai Composite Index. The sensitivity of different characteristic stock combinations to investor sentiment is different. In the short term, except for low price-earnings ratio stocks, other cross-section stock index price sequences are significantly affected by market investor sentiment, and small-cap stocks, low-priced stocks, The stocks with high price-earnings ratio, high price-to-earnings ratio and low price-to-book ratio are more sensitive to the sentiment of market investors, while in the medium and long term, they are characterized by low price stocks, high price-earnings ratio stocks, high transcripts stocks and low price-to-book ratio stocks, which are more sensitive to investors' sentiment in the market. In the medium and long term, investor sentiment leads to the fluctuation of spread sequence, which indicates that investor sentiment has a certain ability to explain the cross-section price of stock market, which indicates that investor sentiment has a cross-sectional influence on the fluctuation of asset price. And this kind of influence has remarkable difference.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:F830.59;F830.91;F224

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 閆偉;楊春鵬;;不同市態(tài)階段的股票收益-風(fēng)險(xiǎn)實(shí)證研究——情緒沖擊與投資策略[J];當(dāng)代財(cái)經(jīng);2011年12期

2 張強(qiáng);楊淑娥;;中國(guó)股市橫截面收益特征與投資者情緒的實(shí)證研究[J];系統(tǒng)工程;2008年07期

3 池麗旭;張廣勝;莊新田;宋大雷;;投資者情緒指標(biāo)與股票市場(chǎng)——基于擴(kuò)展卡爾曼濾波方法的研究[J];管理工程學(xué)報(bào);2012年03期

4 閆偉;楊春鵬;;金融市場(chǎng)中投資者情緒研究進(jìn)展[J];華南理工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2011年03期

5 程昆,劉仁和;投資者情緒與股市的互動(dòng)研究[J];上海經(jīng)濟(jì)研究;2005年11期

6 楊春鵬;閆偉;;單向與雙向情緒下風(fēng)險(xiǎn)資產(chǎn)的認(rèn)知價(jià)格及其投資策略[J];管理科學(xué);2012年03期

7 蔣玉梅;王明照;;投資者情緒與股票橫截面收益的實(shí)證研究[J];經(jīng)濟(jì)管理;2009年10期

8 王美今,孫建軍;中國(guó)股市收益、收益波動(dòng)與投資者情緒[J];經(jīng)濟(jì)研究;2004年10期

9 伍燕然;韓立巖;;不完全理性、投資者情緒與封閉式基金之謎[J];經(jīng)濟(jì)研究;2007年03期

10 蔣玉梅;王明照;;投資者情緒與股票收益:總體效應(yīng)與橫截面效應(yīng)的實(shí)證研究[J];南開(kāi)管理評(píng)論;2010年03期

,

本文編號(hào):1605720

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/guojijinrong/1605720.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1b4b5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com