我國經(jīng)濟(jì)周期波動(dòng)的非對(duì)稱性和持續(xù)性研究 南京廖華
本文關(guān)鍵詞:我國經(jīng)濟(jì)周期波動(dòng)的非對(duì)稱性和持續(xù)性研究,由筆耕文化傳播整理發(fā)布。
2007年第4期
我國經(jīng)濟(jì)周期波動(dòng)的非對(duì)稱性和持續(xù)性研究
陳浪南 劉宏偉3
內(nèi)容提要:本文利用1979年至2004,均值和方差轉(zhuǎn)移的二階自回歸(MSMV(32Gibbs抽樣非參數(shù)估計(jì)方法,。實(shí)證結(jié)果表明,MSMV(3)2AR(2),顯著支持增長率序列具有三區(qū)制狀
態(tài):,。我國經(jīng)濟(jì)周期的非對(duì)稱性主要體現(xiàn)在、方差、階段性之間的轉(zhuǎn)移概率的不同。我國經(jīng)濟(jì)周期的持續(xù)性主要體現(xiàn)在各個(gè)增長階段的自維持概率和階段性之間的轉(zhuǎn)移概率的不同。此外,我國經(jīng)濟(jì)“適速增長階段”的穩(wěn)定性最高“,高速增長階段”的平均持續(xù)期最長。
關(guān)鍵詞:經(jīng)濟(jì)周期 非對(duì)稱性 持續(xù)性 Markov2Switching模型 Gibbs抽樣
一、引 言
經(jīng)濟(jì)周期是指單個(gè)經(jīng)濟(jì)總量增長指標(biāo)圍繞其長期趨勢(shì)的擴(kuò)張和收縮過程而體現(xiàn)出的周期性波動(dòng)。自從BurnsandMitchell(1946)提出了經(jīng)濟(jì)周期階段的具體描述以后,有關(guān)經(jīng)濟(jì)周期波動(dòng)的研究取得了較大的突破。KleinandMoore(1985)提出了增長型經(jīng)濟(jì)周期,即總量經(jīng)濟(jì)水平圍繞其趨勢(shì)水平的波動(dòng)或者總量經(jīng)濟(jì)增長率的波動(dòng)。在增長型周期中,如果實(shí)際增長在長期趨勢(shì)之上,經(jīng)濟(jì)處于擴(kuò)張期;相反,如果實(shí)際增長低于長期趨勢(shì),經(jīng)濟(jì)處于緊縮期。從經(jīng)濟(jì)增長周期理論可知,經(jīng)濟(jì)持續(xù)性地增長是很難達(dá)到的,經(jīng)濟(jì)增長是反復(fù)波動(dòng)、迂回曲折地向前發(fā)展,具有一定的周期性。經(jīng)濟(jì)周期經(jīng)常展現(xiàn)出一些共同的特性,其中重要的一個(gè)就是經(jīng)濟(jì)周期的非對(duì)稱性,即在經(jīng)濟(jì)周期的擴(kuò)張和緊縮階段表現(xiàn)出不同的行為(Kontolemis,1999)。
對(duì)經(jīng)濟(jì)周期的非對(duì)稱性研究最具代表性的文章有:Neftci(1984)的馬爾可夫過程的分析框架對(duì)其的統(tǒng)計(jì)推斷、Hamilton(1989)的二區(qū)制的馬爾可夫轉(zhuǎn)移(MS)模型、Friedman(1993)的“牽拉理論”模型(PluckingModel)和Schel(1994)的三區(qū)制特征的經(jīng)濟(jì)周期模型。Neftci(1984)使用有限狀態(tài)馬爾可夫過程(MarkovProcess)的分析框架支持Keynes(1936)對(duì)經(jīng)濟(jì)周期的非對(duì)稱性現(xiàn)象的描述:美國戰(zhàn)后失業(yè)率存在這樣一種特征———陡然上升和緩慢下降。也就是說,失業(yè)率的上升要比下降的時(shí)間更短。Sichel(1993)識(shí)別了經(jīng)濟(jì)周期中的兩類非對(duì)稱性:谷底型(deep)非對(duì)稱性和波峰型(steep)非對(duì)稱性,并報(bào)告了兩者在美國的經(jīng)濟(jì)周期中都是顯著的。隨后Sichel(1994)提出了3區(qū)制特征的經(jīng)濟(jì)周期模型:衰退階段,高速增長的復(fù)蘇階段———在此階段產(chǎn)出回到以前水平,復(fù)蘇以后的穩(wěn)定增長階段。此外,Brunner(1992,1997),CoverandHueng(2003),FrenchandSichel
3 陳浪南,中山大學(xué)經(jīng)濟(jì)研究所、嶺南學(xué)院,郵政編碼:510275,電子信箱:lnscln@mail.sysu.edu.cn;劉宏偉,廣發(fā)證券結(jié)構(gòu)融資部。本文為教育部人文社會(huì)科學(xué)重點(diǎn)研究基地(復(fù)旦大學(xué)世界經(jīng)濟(jì)研究所)重大項(xiàng)目(05JJD790075);國家自然科學(xué)基金項(xiàng)目(70473106,70673116));中山大學(xué)“985工程”產(chǎn)業(yè)與區(qū)域發(fā)展研究創(chuàng)新基地;上海立信會(huì)計(jì)學(xué)院中國立信風(fēng)險(xiǎn)管理研究院課題;及廣東省普通高校人文社會(huì)科學(xué)重點(diǎn)研究基地經(jīng)費(fèi)資助成果之一。感謝匿名審稿人的寶貴意見。
43
陳浪南、劉宏偉:我國經(jīng)濟(jì)周期波動(dòng)的非對(duì)稱性和持續(xù)性研究
(1993),Hamori(2000)和Lee(1999,2002)等人采用ARCH類模型研究產(chǎn)出增長波動(dòng)率的非對(duì)稱性。研究結(jié)果表明,美國、日本、英國和德國的經(jīng)濟(jì)增長的波動(dòng)率都具有顯著的非對(duì)稱性。
目前,大量的研究采用類似于基于經(jīng)濟(jì)增長緊縮時(shí)期的虛擬變量或閾(Threshold)模型來檢驗(yàn)經(jīng)濟(jì)增長周期的非對(duì)稱性(Kimetal,2005)。KimandNelson(1999b)、MillsandWang(2002)和劉金全、劉志剛與于冬(2005)等人把經(jīng)濟(jì)增長過程簡(jiǎn)單分為二區(qū)制狀態(tài):。他們都采用比較完整的二區(qū)制MS模型,實(shí)證結(jié)果都支持了模型,的一種有效方法,。
近來,國內(nèi)學(xué)者如劉金全和范劍青(2001(2005)等人采用Hodrick2Prescott濾波和時(shí)間趨勢(shì)分解方法GDP、貨幣供應(yīng)量M2、財(cái)政支出、投資、進(jìn)出口、相關(guān)性。,而價(jià)格的非對(duì)稱性調(diào)整會(huì),進(jìn)而導(dǎo)致經(jīng)濟(jì)周期的非對(duì)稱性。但是,他們所采用的數(shù)據(jù)區(qū)間僅為1992年至2000年,觀察值太少。
本文吸收劉樹成(2003)、劉金全和王大勇(2003)、郭明星、劉金全和劉志剛(2005)與Girardin(2005)等人的經(jīng)濟(jì)增長三區(qū)制劃分思想,將我國經(jīng)濟(jì)增長過程劃分為三個(gè)不同的區(qū)制狀態(tài):低速增長階段、適速發(fā)展階段和高速增長階段,并允許各個(gè)區(qū)制內(nèi)的均值和方差不同,運(yùn)用三區(qū)制馬爾可夫均值和方差區(qū)制轉(zhuǎn)移模型和貝葉斯Gibbs抽樣非參數(shù)的方法來研究我國1979—2004年之間經(jīng)濟(jì)增長周期波動(dòng)的非對(duì)稱性和持續(xù)性等特性。
二、實(shí)證模型
(一)模型描述
從圖1A可知,自1978年改革開放以來,我國經(jīng)濟(jì)增長過程出現(xiàn)了顯著的周期性波動(dòng),但自1996年經(jīng)濟(jì)實(shí)現(xiàn)“軟著陸”以后經(jīng)濟(jì)增長的波動(dòng)性明顯降低。圖1B描述了1982年至2004年期間實(shí)際產(chǎn)出增長率的條件波動(dòng)率(采用滾動(dòng)窗口內(nèi)的樣本標(biāo)準(zhǔn)差計(jì)算,窗口長度為16個(gè)季度)。從圖1可知,我國經(jīng)濟(jì)增長的波動(dòng)率并非平穩(wěn)不變的,而是有“大起大落”、“緩起緩落”、“大起緩落”和“緩起大落”等多種形態(tài)
。
圖1 我國實(shí)際季度GDP增長率和條件波動(dòng)性(單位:%)
盡管大量的線性和非線性時(shí)間序列模型能模擬經(jīng)濟(jì)周期中的各種特性,但線性模型不能很好刻畫經(jīng)濟(jì)周期的非對(duì)稱性,最近大量的非線性模型,如閾(Threshold)模型、平滑轉(zhuǎn)移自回歸模型(SmoothTransitionAutoregressivemodel)(TerasvirtaandAnderson,1992),和馬爾可夫區(qū)制轉(zhuǎn)移(Markovregime2Switching,MS)模型(Hamilton,1989;Krolzig,1997,2001;KimandNelson,1999a,b,c,44
2007年第4期
2001)都可以用來描述經(jīng)濟(jì)周期不同階段當(dāng)中的相關(guān)變量的非線性行為。但是,閾(Threshold)模型在描述經(jīng)濟(jì)周期不同階段的轉(zhuǎn)移和鏈接方面存在局限,而STAR模型則側(cè)重于描述不同階段狀態(tài)轉(zhuǎn)移過程中所表現(xiàn)的平滑特征。相比較而言,若把MS模型當(dāng)中不同區(qū)制變量視為經(jīng)濟(jì)周期中的不同階段的話,由于MS模型只需依據(jù)樣本數(shù)據(jù)便可推導(dǎo)出經(jīng)濟(jì)周期不同階段的轉(zhuǎn)換概率,并且MS模型當(dāng)中的系數(shù)估計(jì)、條件均值、異方差性、形式。因而,用MS(Simpsonetal.,2001)。續(xù)性。
,本研究采用類似于McConnellandPerez2Quiros(2000)和K((Markovregime2Switching)模型,結(jié)合AIC和HQ(p=2),最后,我們選取MSMV(3)2AR(2)(Three2regimeMeanandVariancewithAR(2)model)來研究我國經(jīng)濟(jì)周期波動(dòng)的非對(duì)稱特征。具體表述如下:
2[rt-μ(St)]=<1[rt-1-μ(St-1)]+<2[rt-2-μ(St-2)]+σ(St)εt
εt~N[0,1]
2(2.1)(2.2) 其中,rt表示經(jīng)濟(jì)增長率,μ(St)和σ(St)分別為依賴于不可觀測(cè)的狀態(tài)變量St的實(shí)際季度
GDP增長率rt的條件均值和條件方差。另外,我們假定狀態(tài)變量St是離散取值的三區(qū)制一階馬爾可夫過程(MarkovProcess),取值為1,2和3。這樣,變量St的轉(zhuǎn)移概率矩陣P為:
p11,p12,p
13
P=p21,p22,p23
p31,p32,p(2.3)
其中
pij=Pr[St=j|St-1=i],∑3
j=1pij=1,Πi=1,2,3(2.4)
pij表示為狀態(tài)變量St從t21時(shí)刻i狀態(tài)轉(zhuǎn)換到t時(shí)刻j狀態(tài)的概率,很明顯0
本文關(guān)鍵詞:我國經(jīng)濟(jì)周期波動(dòng)的非對(duì)稱性和持續(xù)性研究,,由筆耕文化傳播整理發(fā)布。
本文編號(hào):85466
本文鏈接:http://sikaile.net/jingjifazhanlunwen/85466.html