跳擴(kuò)散模型在風(fēng)險(xiǎn)理論中的應(yīng)用
發(fā)布時(shí)間:2021-02-25 06:52
集體風(fēng)險(xiǎn)理論主要用來(lái)研究保險(xiǎn)公司的風(fēng)險(xiǎn)行為,百年來(lái)一直備受關(guān)注,是精算數(shù)學(xué)中重要的一支。其經(jīng)典模型由Lundberg在1903的論文(Lundberg(1903))中引進(jìn),而后經(jīng)過(guò)Harald Cramer等人的努力,使得模型在數(shù)學(xué)上的定義更為嚴(yán)謹(jǐn),被大多數(shù)人接受。經(jīng)典模型,同時(shí)也被稱(chēng)為Cramer-Lundberg風(fēng)險(xiǎn)模型,將所討論的公司模型刻畫(huà)為復(fù)合Poisson過(guò)程,在很多方面得到了應(yīng)用和發(fā)展。Gerber(1970)提出的帶干擾的復(fù)合Poisson模型和Andersen(1957)提出的更新模型,也就是Sparre Anderson模型就是其中比較有名的成功的例子。伴隨模型的發(fā)展和豐富,多種多樣的理論,方法和函數(shù)被引入風(fēng)險(xiǎn)理論的研究中。比如,更新理論,Winener-Hoff方程,It(?)公式,逐段決定馬氏過(guò)程還有鞅方法都是風(fēng)險(xiǎn)理論及其相關(guān)領(lǐng)域中比較常用的方法。Gerber and Shiu(1997,1998a)在古典模型中引入Gerber-Shiu罰金函數(shù),使得在精算中最重要三個(gè)變量,破產(chǎn)時(shí)間,破產(chǎn)赤字,破產(chǎn)前盈余,完美的統(tǒng)一在一起,之后由Tsai and Willmot...
【文章來(lái)源】:南開(kāi)大學(xué)天津市 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:108 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Abstract
摘要
1 Introduction
1.1 Background
1.2 Organization and Main Contents of This Thesis
2 Perturbed compound Poisson risk model with a threshold dividend strategy
2.1 Introduction
2.2 Preliminaries
2.2.1 The related process
2.2.2 The solution to defective IDE
2.3 Integro-differential Equations for the Gerber-Shiu function
2.4 Integro-differential Equations for the expected discounted dividend payments function
2.5 Conclusions
3 The dividend function in the jump-diffusion dual model with barrier dividend strategy
3.1 Introduction
3.2 Preliminaries
3.3 Integro-differential Equations and their Solution
3.4 Example
4 Study of Markov-modulated jump-diffusion risk process
4.1 A renewal jump-diffusion process
4.1.1 Risk process analyzed as fluid flow
4.1.2 Fundamental quantities of(R(s),J(s))
4.2 Markov-modulated jump-diffusion process
4.2.1 The generalization of fluid flow(R(s),J(s))
4.2.2 Back to the risk process
4.2.3 Passage times of the Markov-modulated process
0,U(Υ0-),U(Υ0))"> 4.2.4 The joint distribution of(Υ0,U(Υ0-),U(Υ0))
4.2.5 Example
4.3 Markov-modulated jump-diffusion process with the presence of threshold dividend
4.3.1 The auxiliary vector V(u,b)
ij(u,b))"> 4.3.2 The auxiliary matrix(φij(u,b))
4.3.3 Main results
4.3.4 Examples
4.4 Markov-modulated jump-diffusion process with multi-layer dividend strategy
4.4.1 Risk model with multi-layer dividend
4.4.2 Main results
4.4.3 Example
Bibliography
Acknowledgements
Resume and Publications
本文編號(hào):3050612
【文章來(lái)源】:南開(kāi)大學(xué)天津市 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:108 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Abstract
摘要
1 Introduction
1.1 Background
1.2 Organization and Main Contents of This Thesis
2 Perturbed compound Poisson risk model with a threshold dividend strategy
2.1 Introduction
2.2 Preliminaries
2.2.1 The related process
2.2.2 The solution to defective IDE
2.3 Integro-differential Equations for the Gerber-Shiu function
2.4 Integro-differential Equations for the expected discounted dividend payments function
2.5 Conclusions
3 The dividend function in the jump-diffusion dual model with barrier dividend strategy
3.1 Introduction
3.2 Preliminaries
3.3 Integro-differential Equations and their Solution
3.4 Example
4 Study of Markov-modulated jump-diffusion risk process
4.1 A renewal jump-diffusion process
4.1.1 Risk process analyzed as fluid flow
4.1.2 Fundamental quantities of(R(s),J(s))
4.2 Markov-modulated jump-diffusion process
4.2.1 The generalization of fluid flow(R(s),J(s))
4.2.2 Back to the risk process
4.2.3 Passage times of the Markov-modulated process
0,U(Υ0-),U(Υ0))"> 4.2.4 The joint distribution of(Υ0,U(Υ0-),U(Υ0))
4.2.5 Example
4.3 Markov-modulated jump-diffusion process with the presence of threshold dividend
4.3.1 The auxiliary vector V(u,b)
ij(u,b))"> 4.3.2 The auxiliary matrix(φij(u,b))
4.3.3 Main results
4.3.4 Examples
4.4 Markov-modulated jump-diffusion process with multi-layer dividend strategy
4.4.1 Risk model with multi-layer dividend
4.4.2 Main results
4.4.3 Example
Bibliography
Acknowledgements
Resume and Publications
本文編號(hào):3050612
本文鏈接:http://sikaile.net/jingjifazhanlunwen/3050612.html
最近更新
教材專(zhuān)著