天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

近似因子模型的懲罰極大似然估計(jì)

發(fā)布時(shí)間:2018-05-30 11:16

  本文選題:因子模型 + 懲罰。 參考:《浙江工商大學(xué)》2017年碩士論文


【摘要】:在經(jīng)濟(jì)、金融和其他科學(xué)領(lǐng)域,研究者經(jīng)常要面臨大數(shù)據(jù)集,因子模型由于能夠有效地從大數(shù)據(jù)集中提煉信息而被廣泛關(guān)注.研究因子模型的首要問題即為模型中參數(shù)的估計(jì)問題.本文研究近似因子模型的懲罰極大似然估計(jì)并證明了估計(jì)量的相合性.本文對模型做的關(guān)鍵假設(shè)是:特殊因子協(xié)方差陣是稀疏陣.在這樣的假設(shè)下可引進(jìn)懲罰函數(shù)用以懲罰特殊因子協(xié)方差陣中的元素.懲罰函數(shù)采用加權(quán)l(xiāng)1的形式.文中給出三種選擇權(quán)重的方法,每種方法確定的懲罰函數(shù)分別稱為Lasso罰函數(shù)、Adaptive-lasso罰函數(shù)和SCAD罰函數(shù).懲罰極大似然法通過最小化負(fù)的高斯擬似然函數(shù)與懲罰函數(shù)之和得到因子載荷、公共因子和特殊因子協(xié)方差陣.與主成分方法依次得到公共因子、因子載荷及特殊因子協(xié)方差陣不同,懲罰極大似然法同時(shí)得到因子載荷和特殊因子協(xié)方差陣的估計(jì).在數(shù)值模擬部分將該方法分別與傳統(tǒng)主成分方法、加權(quán)主成分方法和極大似然方法做了詳細(xì)對比.模擬結(jié)果表明,懲罰極大似然法的表現(xiàn)優(yōu)于其他方法.本文的結(jié)構(gòu)安排如下.第一章論述研究的背景、意義和現(xiàn)狀.第二章為模型介紹、相關(guān)假設(shè)和本文的主要結(jié)果及其證明.第三章討論計(jì)算與模擬問題.最后一章對全文做出總結(jié)并指出了待解決的問題和今后的研究方向。
[Abstract]:In the fields of economics, finance and other sciences, researchers often face big data sets, and factor models have attracted much attention because of their ability to extract information from big data centralization effectively. The most important problem in the study of factor model is the estimation of parameters in the model. In this paper, we study the penalty maximum likelihood estimation of the approximate factor model and prove the consistency of the estimator. The key assumption of the model is that the special factor covariance matrix is sparse matrix. Under this assumption, the penalty function can be introduced to punish the elements in the covariance matrix of special factors. The penalty function takes the form of weighted l 1. Three methods of selecting weights are given in this paper. The penalty functions determined by each method are called Lasso penalty function Adaptive-lasso penalty function and SCAD penalty function respectively. By minimizing the sum of negative Gao Si quasi-likelihood functions and penalty functions, the penalty maximum likelihood method obtains factor loads, common factors and special factor covariance matrices. Different from the principal component method, the common factor, the factor load and the special factor covariance matrix are obtained in turn. The penalty maximum likelihood method is used to estimate the factor load and the special factor covariance matrix at the same time. In the part of numerical simulation, the method is compared with the traditional principal component method, the weighted principal component method and the maximum likelihood method in detail. The simulation results show that the performance of the penalty maximum likelihood method is better than that of other methods. The structure of this paper is as follows. The first chapter discusses the background, significance and current situation of the research. The second chapter is the introduction of the model, the related assumptions and the main results of this paper and its proof. Chapter three discusses the problem of calculation and simulation. The last chapter summarizes the full text and points out the problems to be solved and the future research direction.
【學(xué)位授予單位】:浙江工商大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F224

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉建和;方慶松;陳柯亦;;基于因子模型的指數(shù)跟蹤研究綜述[J];中國證券期貨;2010年11期

2 杜本峰;因子模型在風(fēng)險(xiǎn)預(yù)算分析中的應(yīng)用[J];中國管理科學(xué);2004年03期

3 牛晉霞;趙芳;;股權(quán)分置改革對資本市場的有效性影響——基于三因子模型的實(shí)證研究[J];山西青年管理干部學(xué)院學(xué)報(bào);2009年01期

4 馬廣奇;許華;張林云;;陜西省上市公司運(yùn)營狀況的因子模型分析[J];陜西科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期

5 王s,

本文編號:1955105


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjifazhanlunwen/1955105.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ccd50***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
日本女人亚洲国产性高潮视频| 日韩成人动作片在线观看| 91蜜臀精品一区二区三区| 精产国品一二三区麻豆| 一区二区日韩欧美精品| 香蕉久久夜色精品国产尤物| 午夜亚洲少妇福利诱惑| 欧美熟妇喷浆一区二区| 少妇高潮呻吟浪语91| 97精品人妻一区二区三区麻豆| 国产又色又爽又黄又大| 五月婷婷缴情七月丁香| 国产成人精品一区在线观看| 久久人妻人人澡人人妻| 日系韩系还是欧美久久| 激情视频在线视频在线视频| 又大又长又粗又黄国产| 日韩精品少妇人妻一区二区| 国产精品香蕉免费手机视频| 欧美精品久久男人的天堂| 人体偷拍一区二区三区| 一区二区三区精品人妻| 成在线人免费视频一区二区| 欧美又大又黄刺激视频| 亚洲精品有码中文字幕在线观看| 日本丰满大奶熟女一区二区| 热情的邻居在线中文字幕| 丰满熟女少妇一区二区三区| 欧美乱码精品一区二区三| 亚洲国产综合久久天堂| 亚洲午夜av一区二区| 国产精品久久熟女吞精| 深夜少妇一区二区三区| 国产伦精品一一区二区三区高清版 | 国产精品自拍杆香蕉视频| 亚洲日本中文字幕视频在线观看 | 青青操成人免费在线视频| 国产精品超碰在线观看| 欧美日韩精品综合在线| 少妇高潮呻吟浪语91| 午夜传媒视频免费在线观看|