人員能力與任務(wù)不確定環(huán)境下的一種任務(wù)分配方法研究
本文關(guān)鍵詞: 不確定性 任務(wù)-人員分配 馬爾科夫決策過(guò)程(MDP)模型 MATB 出處:《北京交通大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:動(dòng)態(tài)任務(wù)分配就是將合適的任務(wù)實(shí)時(shí)地分配給合適的成員,以充分利用系統(tǒng)的資源,提高任務(wù)的完成績(jī)效。在一個(gè)不確定性系統(tǒng)中,任務(wù)到達(dá)的時(shí)間是隨機(jī)的、不確定的,到達(dá)的任務(wù)類(lèi)型是多樣的、變化的,外界環(huán)境的變化會(huì)增加系統(tǒng)的不確定性,同時(shí)人員受外界以及自身狀態(tài)的影響其處理任務(wù)的能力也是波動(dòng)的。隨著人工智能的發(fā)展,動(dòng)態(tài)任務(wù)分配理論成果越來(lái)越成熟,其應(yīng)用領(lǐng)域也更加廣泛,但仍缺乏對(duì)不確定性人機(jī)系統(tǒng)中的任務(wù)-人員動(dòng)態(tài)分配的研究。現(xiàn)有的任務(wù)-人員動(dòng)態(tài)分配研究中,多集中于對(duì)外界不確定性的研究,而忽略人員能力波動(dòng)性也會(huì)導(dǎo)致人機(jī)系統(tǒng)的不確定性。借鑒多Agent系統(tǒng)在不確定環(huán)境下智能體決策理論,建立馬爾科夫決策過(guò)程(Markov Decision Processes,MDP)模型解決不確定性人機(jī)系統(tǒng)中任務(wù)-人員動(dòng)態(tài)分配問(wèn)題,豐富任務(wù)-人員動(dòng)態(tài)分配理論,解決實(shí)際不確定性任務(wù)-人員動(dòng)態(tài)分配問(wèn)題、人員合作模式選擇問(wèn)題,從而降低不確定事件對(duì)系統(tǒng)的不良影響,提高系統(tǒng)的運(yùn)作效率。論文完成的主要工作如下:(1)針對(duì)人機(jī)系統(tǒng)外界環(huán)境不確定和作業(yè)者能力波動(dòng),建立了基于MDP的人員能力與任務(wù)不確定性分配模型,并對(duì)MDP模型中的每個(gè)參數(shù)給出具體定義和說(shuō)明,論證了其解的存在性,使用改進(jìn)的策略迭代算法對(duì)模型進(jìn)行了求解。(2)以MATB(Multi-Attribute Task Battery,多屬性任務(wù)組)動(dòng)態(tài)任務(wù)環(huán)境為應(yīng)用背景,對(duì)MATB中任務(wù)-人員分配以及人員合作方式的選擇問(wèn)題進(jìn)行了深入地分析,通過(guò)構(gòu)建合理的人因?qū)嶒?yàn)設(shè)計(jì),有效解決了 MDP模型求解所需的腦力負(fù)荷值、處理速度概率值、人員差異性等參數(shù)的獲取問(wèn)題。(3)采用MATLAB仿真,對(duì)隨機(jī)任務(wù)-人員分配策略和基于MDP的分配策略進(jìn)行了比較,驗(yàn)證了基于MDP分配策略的有效性和優(yōu)越性,并對(duì)兩種不同人員合作模式的分配策略進(jìn)行了對(duì)比分析,證明了能力均等的合作方式優(yōu)于能力差異的組合方式。
[Abstract]:Dynamic task allocation is to assign the right task to the right member in real time to make full use of the system's resources and improve the performance of the task. In an uncertain system, the time of task arrival is random and uncertain. The types of tasks that arrive are diverse and varied, and changes in the external environment increase the uncertainty of the system, and the ability of people to handle tasks under the influence of the outside world and their own states is also fluctuating. The theory of dynamic task assignment is becoming more and more mature, and its application field is more extensive. However, there is still a lack of research on dynamic assignment of task-personnel in uncertain man-machine system. Most of the researches focus on the uncertainty of the outside world, but ignoring the volatility of human ability will lead to the uncertainty of the man-machine system. This paper draws lessons from the theory of agent decision-making in the uncertain environment of multi-#en0# system. A Markov Decision process model is established to solve the problem of dynamic assignment of task-personnel in uncertain man-machine system, which enriches the theory of dynamic assignment of task-person, and solves the problem of dynamic assignment of uncertain task-person in practice. In order to reduce the adverse effects of uncertain events on the system and improve the operational efficiency of the system, the main work accomplished in this paper is as follows: 1) aiming at the uncertainty of the external environment of the man-machine system and the fluctuation of the operator's ability, In this paper, the model of personnel ability and task uncertainty assignment based on MDP is established, and each parameter in the MDP model is defined and explained in detail, and the existence of the solution is proved. Using the improved strategy iterative algorithm to solve the model. (2) taking the MATB(Multi-Attribute Task batch (multi-attribute task group) dynamic task environment as the application background, the problem of the task-person assignment and the choice of the cooperation mode in the MATB is deeply analyzed. By constructing a reasonable human factor experimental design, the problem of obtaining parameters such as mental load value, probability value of processing speed, personnel difference and so on for solving MDP model is effectively solved by MATLAB simulation. This paper compares the random task-personnel allocation strategy with the allocation strategy based on MDP, validates the effectiveness and superiority of the allocation strategy based on MDP, and makes a comparative analysis of the allocation strategies of two different personnel cooperation modes. It is proved that the cooperative mode of ability equality is superior to the combination mode of ability difference.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 謝天;王鐵驪;劉保平;韋瑤瑤;;面向復(fù)合型核應(yīng)急人才任務(wù)指派決策的WINQSB應(yīng)用[J];教育現(xiàn)代化;2016年27期
2 丁長(zhǎng)松;王志英;胡志剛;;分布式環(huán)境中基于市場(chǎng)機(jī)制的資源自適應(yīng)調(diào)價(jià)策略[J];通信學(xué)報(bào);2016年02期
3 李明;劉瑋;張彥鐸;;基于改進(jìn)合同網(wǎng)協(xié)議的多Agent動(dòng)態(tài)任務(wù)分配[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2016年02期
4 張立;王茜竹;趙春江;汪霞;姜大立;;基于心智與擴(kuò)展合同網(wǎng)的半自治多智能體任務(wù)分配[J];計(jì)算機(jī)集成制造系統(tǒng);2015年11期
5 趙亞玲;葛茂根;扈靜;張銘鑫;張璽;;柔性生產(chǎn)中基于人員任務(wù)匹配度的人員調(diào)度[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期
6 馬嵩華;田凌;;面向中小企業(yè)有限人員的經(jīng)驗(yàn)任務(wù)分配策略[J];計(jì)算機(jī)集成制造系統(tǒng);2014年09期
7 陳明;簡(jiǎn)玉梅;;基于心智系數(shù)的多Agent合同網(wǎng)協(xié)作模型研究[J];計(jì)算機(jī)應(yīng)用與軟件;2013年06期
8 蔣偉進(jìn);駱?lè)?史德嘉;;MAS動(dòng)態(tài)協(xié)作任務(wù)求解模型與算法[J];智能系統(tǒng)學(xué)報(bào);2010年02期
9 張輝,程濤,胡于進(jìn),李成剛,劉黎明;虛擬制造組織中的任務(wù)分配問(wèn)題[J];中國(guó)制造業(yè)信息化;2003年07期
,本文編號(hào):1530034
本文鏈接:http://sikaile.net/jingjifazhanlunwen/1530034.html