慢跑鞋前掌屈曲剛度對(duì)跑步經(jīng)濟(jì)性和下肢生物力學(xué)特征的影響
本文選題:跑步經(jīng)濟(jì)性 + 慢跑鞋前掌屈曲剛度 ; 參考:《北京體育大學(xué)》2017年碩士論文
【摘要】:研究目的:從能量代謝及下肢關(guān)節(jié)做功等角度綜合分析慢跑鞋前掌屈曲剛度對(duì)跑步經(jīng)濟(jì)性的影響及機(jī)制,為跑鞋的設(shè)計(jì)制造及消費(fèi)者選鞋提供參考。研究方法:通過改變中底凹槽的密度和深度制作5雙不同屈曲剛度的慢跑鞋(A、B、C、D、E鞋的屈曲剛度依次減小),鞋碼為歐碼41碼。選取11名青年男性大學(xué)生。第一階段,進(jìn)行無氧閾強(qiáng)度測(cè)試,測(cè)出每一位受試者自己適應(yīng)的個(gè)體跑步經(jīng)濟(jì)性速度,在跑臺(tái)(h/p/cosmos Mercury4.0,Germany)上完成,通過Cortex氣體代謝分析系統(tǒng)(Metalyzer 3B,Cortex Biophysik,Leipzig,Germany)進(jìn)行氣體分析,正式實(shí)驗(yàn)室選用低于無氧閾強(qiáng)度0.8km/h的速度進(jìn)行測(cè)試。測(cè)試第二階段為跑步經(jīng)濟(jì)性測(cè)試,按隨機(jī)順序測(cè)試穿每雙鞋慢跑時(shí)的耗氧量。測(cè)試第三階段,應(yīng)用三維測(cè)力臺(tái)(Kistler 9281CA,Switzerland,采樣頻率1000Hz)和8鏡頭紅外高速運(yùn)動(dòng)捕捉系統(tǒng)(Motion Analysis Raptor-4,USA,200Hz)同步記錄穿不同鞋慢跑過程中的運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)參數(shù),速度采用每人的個(gè)體跑步經(jīng)濟(jì)性測(cè)試速度。采用單因素重復(fù)測(cè)量方差分析統(tǒng)計(jì)慢跑鞋前掌屈曲剛度對(duì)耗氧量及下肢關(guān)節(jié)功等參數(shù)的影響。研究結(jié)果:慢跑鞋前掌屈曲剛度對(duì)跑步經(jīng)濟(jì)性的影響表現(xiàn)出統(tǒng)計(jì)學(xué)差異(P=0.013),A、E鞋均顯著大于C鞋和B鞋。鞋前掌屈曲剛度對(duì)下肢跖趾關(guān)節(jié)的正功(P=0.001)、負(fù)功(P0.001)、凈功(P0.001)以及關(guān)節(jié)角度、力矩均表現(xiàn)出統(tǒng)計(jì)學(xué)差異,對(duì)踝關(guān)節(jié)角度也表現(xiàn)出統(tǒng)計(jì)學(xué)差異,但對(duì)髖關(guān)節(jié)和膝關(guān)節(jié)的生物力學(xué)參數(shù)沒有影響。研究結(jié)論:(1)慢跑鞋前掌屈曲剛度對(duì)跑步經(jīng)濟(jì)性的影響呈現(xiàn)倒“U”型趨勢(shì),適當(dāng)屈曲剛度的跑鞋比剛度過大或過小的跑鞋有利于提高跑步經(jīng)濟(jì)性;(2)慢跑鞋前掌屈曲剛度對(duì)跖趾關(guān)節(jié)機(jī)械功的影響呈現(xiàn)“U”型趨勢(shì),適當(dāng)前掌屈曲剛度的跑鞋能有效的減少跖趾關(guān)節(jié)的能量流失,但對(duì)髖關(guān)節(jié)、膝關(guān)節(jié)和踝關(guān)節(jié)的機(jī)械功影響不顯著;(3)慢跑鞋前掌屈曲剛度對(duì)跖趾關(guān)節(jié)機(jī)械功的影響可能是其影響跑步經(jīng)濟(jì)性的一部分原因。
[Abstract]:Objective: to analyze the effect and mechanism of the flexion stiffness of front palms of jogging shoes on running economy from the angle of energy metabolism and joint work of lower limbs, so as to provide reference for the design and manufacture of running shoes and the choice of shoes for consumers. Methods: by changing the density and depth of the midsole grooves, 5 pairs of jogging shoes with different flexion stiffness were made. Eleven young male college students were selected. In the first stage, the anaerobic threshold strength test was carried out to measure the economic running speed of each individual to which each of the subjects adapted himself, and was completed on the platform / h / p / cosmos Mercury4.0 / Germany.The gas analysis was carried out through the Cortex gas metabolism analysis system (Metalyzer 3B Cortex Biophysiktr LeipzigGermany). The formal laboratory selected a speed lower than the anaerobic threshold strength 0.8km/h to test. The second stage was a running economy test, which measured the oxygen consumption of each pair of shoes during jogging in random order. In the third phase of the test, the kinematics and dynamics parameters of different jogging shoes were recorded synchronously by using the 3-D force measuring platform Kistler 9281CA switch land (sampling frequency 1000Hz) and the 8-lens infrared high-speed motion capture system (Motion Analysis Raptor-4USAA 200Hz). The speed is measured by the individual running economy of each person. Single factor repeated measurement variance analysis was used to analyze the effect of flexion stiffness on oxygen consumption and joint work of lower limbs in jogging shoes. Results: the effect of flexion stiffness of front palms of jogging shoes on running economy was significantly higher than that of C shoes and B shoes. The flexion stiffness of the front metatarpal of the shoe showed statistical difference on the positive work of the metatarsophalangeal joint of the lower extremity P0. 001, negative work of P0. 001, P0. 001) and the angle and torque of the joint, and the angle of the ankle joint was also statistically different. But there was no effect on the biomechanical parameters of hip and knee joint. Conclusion: (1) the effect of flexion stiffness of front palms of jogging shoes on running economy shows a trend of inverted "U" shape. Running shoes with proper flexion stiffness were more advantageous to improve running economy than those with large or too small flexion stiffness. The effect of flexion stiffness on the mechanical work of metatarsophalangeal joint showed a "U" trend, and the effect of flexion stiffness on the mechanical work of metatarsophalangeal joint showed a "U" trend. Running shoes with proper flexion stiffness can effectively reduce the loss of energy in the metatarsophalangeal joint, but for the hip joint, The effect of the flexural stiffness of the front palmar of jogging shoes on the mechanical work of metatarsophalangeal joint may be a part of the reason that affects the economy of running.
【學(xué)位授予單位】:北京體育大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:G804.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 代浩然;蔡宇輝;;幾種慢跑鞋足底壓強(qiáng)分析及舒適性能比較[J];湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年S1期
2 張會(huì);;選擇慢跑鞋5注意[J];現(xiàn)代養(yǎng)生;2008年10期
3 李艷霞,趙文杰;論慢跑鞋設(shè)計(jì)的解剖學(xué)和生物力學(xué)依據(jù)[J];吉林體育學(xué)院學(xué)報(bào);2004年02期
4 石宏杰;蔡宇輝;劉潤(rùn)生;王艷菊;;慢跑鞋的足底壓強(qiáng)分析與功能評(píng)價(jià)[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年06期
5 胡宗祥;陳學(xué)燦;關(guān)雪瓊;;對(duì)慢跑鞋力學(xué)舒適性評(píng)價(jià)的研究[J];體育科學(xué)研究;2013年06期
6 陽光;鏈接[J];當(dāng)代體育;2001年04期
7 劉靜民;鄭秀瑗;蔡宇輝;劉卉;;慢跑鞋功能測(cè)評(píng)方法的探討性研究[J];北京體育大學(xué)學(xué)報(bào);2007年03期
8 李曉東;王善坤;侯少華;董曉冰;李偉;;青少年赤足與穿鞋運(yùn)動(dòng)的生物力學(xué)分析[J];天津體育學(xué)院學(xué)報(bào);2008年03期
9 ;潮頭堡[J];體育健康知識(shí)畫刊;2008年04期
10 龐陽康;崔玖梅;;穿不同慢跑鞋走跑時(shí)能量消耗的比較分析[J];山東體育學(xué)院學(xué)報(bào);2011年02期
相關(guān)會(huì)議論文 前7條
1 林昆鋒;許瓊云;陳景云;林寶城;;不同慢跑鞋鞋底紋路摩擦現(xiàn)象之探討[A];第十三屆全國(guó)運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)論文匯編[C];2009年
2 曲毅;劉卉;屈莎;;慢跑鞋鞋底硬度對(duì)舒適性的影響[A];第十六屆全國(guó)運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)(CABS 2013)論文集[C];2013年
3 霍洪峰;趙煥彬;黃翠;王海濤;;穿不同慢跑鞋運(yùn)動(dòng)時(shí)足底壓力、足部控制及鞋減震性能的實(shí)驗(yàn)研究[A];第八屆全國(guó)體育科學(xué)大會(huì)論文摘要匯編(二)[C];2007年
4 劉靜民;曹振水;邢鈺;蔡宇輝;劉卉;;運(yùn)動(dòng)員穿不同慢跑鞋運(yùn)動(dòng)時(shí)足底壓力的研究[A];第十一屆全國(guó)運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)論文匯編(摘要)[C];2006年
5 趙鎧澤;劉靜民;鄭秀瑗;;慢跑鞋舒適性的生物力學(xué)測(cè)試與評(píng)價(jià)[A];第九屆全國(guó)體育科學(xué)大會(huì)論文摘要匯編(2)[C];2011年
6 趙煥彬;霍洪峰;;走、跑足底壓力特征與鞋內(nèi)底功能評(píng)價(jià)研究[A];第十四屆全國(guó)運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)論文集[C];2010年
7 劉靜民;鄭秀瑗;曹振水;;慢跑鞋鞋底和減震內(nèi)底墊材料力學(xué)性能的試驗(yàn)研究[A];第12屆全國(guó)運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)論文匯編[C];2008年
相關(guān)重要報(bào)紙文章 前4條
1 萬新軍;“全球第一慢跑鞋”重返中國(guó)[N];中華工商時(shí)報(bào);2006年
2 本報(bào)記者 戴群艷 通訊員 易旺成 林煌;總統(tǒng)慢跑鞋“跑”出了什么[N];中國(guó)國(guó)門時(shí)報(bào);2012年
3 劉國(guó)信;如何選擇慢跑鞋[N];中國(guó)中醫(yī)藥報(bào);2006年
4 ;最簡(jiǎn)單的康體運(yùn)動(dòng)[N];重慶商報(bào);2000年
相關(guān)碩士學(xué)位論文 前5條
1 霍洪峰;慢跑鞋生物力學(xué)性能評(píng)價(jià)指標(biāo)體系的建立[D];河北師范大學(xué);2008年
2 李秋捷;慢跑鞋前掌屈曲剛度對(duì)跑步經(jīng)濟(jì)性和下肢生物力學(xué)特征的影響[D];北京體育大學(xué);2017年
3 曲毅;慢跑鞋鞋底硬度對(duì)舒適性及緩沖性能的影響[D];北京體育大學(xué);2013年
4 金韻;基于舒適性的慢跑鞋設(shè)計(jì)實(shí)踐與研究[D];中國(guó)美術(shù)學(xué)院;2014年
5 趙闖;慢跑鞋減震鞋墊的設(shè)計(jì)與研究[D];陜西科技大學(xué);2013年
,本文編號(hào):1785796
本文鏈接:http://sikaile.net/jiaoyulunwen/tylw/1785796.html