FRP筋混凝土深梁的抗剪性能分析
發(fā)布時(shí)間:2021-11-13 08:36
近年來(lái),有限元分析(FEM)在結(jié)構(gòu)研究與設(shè)計(jì)的應(yīng)用前景日益凸顯。因此,利用有限元分析研究全尺寸深梁的力學(xué)性能,可以免于大型試驗(yàn)冗雜的準(zhǔn)備工作和高昂的試驗(yàn)費(fèi)用,是較好的研究途徑。本文圍繞FRP增強(qiáng)混凝土深梁的抗剪性能展開了一系列研究工作。研究分三個(gè)階段進(jìn)行:數(shù)值模擬,參數(shù)分析和統(tǒng)計(jì)分析。使用有限元分析軟件(ABAQUS)進(jìn)行了數(shù)值模擬,考察不同參數(shù)對(duì)構(gòu)件抗剪性能的影響,例如剪切跨度與深度之比,配筋率和荷載板的尺寸。將數(shù)值模擬的計(jì)算值與所選文獻(xiàn)的試驗(yàn)值進(jìn)行了對(duì)比,包括極限承載力、相應(yīng)的中跨撓度、破壞模式等;進(jìn)行了拓展參數(shù)分析,以進(jìn)一步研究FRP增強(qiáng)混凝土深梁的抗剪性能,并研究影響其極限承載力的關(guān)鍵參數(shù),本文提出的有限元分析方法在評(píng)估不同參數(shù)對(duì)構(gòu)件極限承載力的影響方面表現(xiàn)出良好的準(zhǔn)確性。此外,從文獻(xiàn)中收集了66個(gè)FRP增強(qiáng)混凝土深梁實(shí)驗(yàn)測(cè)試的數(shù)據(jù)庫(kù),以評(píng)估所提出的抗剪強(qiáng)度方程的有效性以及檢查加拿大規(guī)范STM(CSA S80-12)。提出的方程式產(chǎn)生了相對(duì)安全的結(jié)果,而加拿大規(guī)定的STM(CSA S806-12)則低估了數(shù)據(jù)庫(kù)中的結(jié)果,實(shí)驗(yàn)至預(yù)測(cè)值的平均值為1.87,COV為34.63%。這種...
【文章來(lái)源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:85 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
摘要
Chapter 1 Introduction
1.1 Background
1.1.1 Strength and characteristics of deep beams
1.1.2 Field problems of reinforced concrete deep beams
1.2 FRP Const ituents:Fibers
1.2.1 FRP Constituents:Resin
1.2.2 FRP Constituents:Fillers and Additives
1.2.3 Characteristics of FRP bars
1.2.4 Advantages and Applications of FRP bars
1.2.5 Limitations of FRP bars
1.3 Literature review
1.4 Object ive of the Thesis
1.5 Structure of the Thesis
Chapter 2 Non-linear Finite Element Modeling
2.1 Introduct ion
2.1.1 Beam Parts and Section Assignments
2.2 Constitut ive Models
2.3 Concrete Model
2.3.1 Uniaxial Compressive Behavior
2.3.2 Uniaxial Tensile Behavior
2.3.3 Compression and Tension damage parameters
2.3.4 Concrete Poisson’s Ratio
2.4 FRP reinforcement
2.5 U-shaped steel st irrups
2.6 Elements
2.6.1 Solid Element for modeling Concrete and bearing plates
2.6.2 Truss Element for modeling FRP bars
2.7 Meshing
2.8 Assembly,Boundary Condit ions and Loading
2.9 Time Step Incrementat ion
2.9.1 Mass Scaling in ABAQUS explicit
2.9.2 Smooth amplitude curves
2.10 Interact ion
2.10.1 Interaction between FRP bars and Surrounding Concrete
2.10.2 Interaction between Concrete and Bearing plates
2.11 Summary of the proposed FEM
Chapter 3 Results and Discussion of the FEM
3.1 Validation of the FEM
3.1.1 Description of the test
3.2 Comparison of Crack Pattern and Mode of Failure
3.3 Comparison of load-midspan deflection response curves
3.4 Parametric study
3.4.1 Effect of FRP longitudinal reinforcement ratio(ρ)on the beam capacity
3.4.2 Effect of concrete compressive strength fc on the beam capacity
3.4.3 Effect of shear span-to-depth ratio(a/d)on the beam capacity
3.4.4 Effect of loading-plate size(lt)on the beam capacity
3.5 Modified Shear strength equat ion
3.6 Chapter Summary
Chapter 4 Shear strength of FRP-RC deep beams
4.1 Introduct ion
4.2 Shear mechanism
4.2.1 Failure mechanism of FRP-RC deep beams
4.3 Strut and Tie Method(STM)
4.3.1 Modeling of FRP-RC deep beams using Strut and Tie Method(STM)
4.3.2 Components of Strut and Tie Model
4.3.3 Calculation procedure
4.4 Jang et al.equat ions
4.5 K.Mohamed et al.equat ion
4.6 Comparat ive Analysis
4.7 Chapter Summary
Conclusion and Recommendations
References
Appendix
Acknowledgements
本文編號(hào):3492704
【文章來(lái)源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:85 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
摘要
Chapter 1 Introduction
1.1 Background
1.1.1 Strength and characteristics of deep beams
1.1.2 Field problems of reinforced concrete deep beams
1.2 FRP Const ituents:Fibers
1.2.1 FRP Constituents:Resin
1.2.2 FRP Constituents:Fillers and Additives
1.2.3 Characteristics of FRP bars
1.2.4 Advantages and Applications of FRP bars
1.2.5 Limitations of FRP bars
1.3 Literature review
1.4 Object ive of the Thesis
1.5 Structure of the Thesis
Chapter 2 Non-linear Finite Element Modeling
2.1 Introduct ion
2.1.1 Beam Parts and Section Assignments
2.2 Constitut ive Models
2.3 Concrete Model
2.3.1 Uniaxial Compressive Behavior
2.3.2 Uniaxial Tensile Behavior
2.3.3 Compression and Tension damage parameters
2.3.4 Concrete Poisson’s Ratio
2.4 FRP reinforcement
2.5 U-shaped steel st irrups
2.6 Elements
2.6.1 Solid Element for modeling Concrete and bearing plates
2.6.2 Truss Element for modeling FRP bars
2.7 Meshing
2.8 Assembly,Boundary Condit ions and Loading
2.9 Time Step Incrementat ion
2.9.1 Mass Scaling in ABAQUS explicit
2.9.2 Smooth amplitude curves
2.10 Interact ion
2.10.1 Interaction between FRP bars and Surrounding Concrete
2.10.2 Interaction between Concrete and Bearing plates
2.11 Summary of the proposed FEM
Chapter 3 Results and Discussion of the FEM
3.1 Validation of the FEM
3.1.1 Description of the test
3.2 Comparison of Crack Pattern and Mode of Failure
3.3 Comparison of load-midspan deflection response curves
3.4 Parametric study
3.4.1 Effect of FRP longitudinal reinforcement ratio(ρ)on the beam capacity
3.4.2 Effect of concrete compressive strength fc on the beam capacity
3.4.3 Effect of shear span-to-depth ratio(a/d)on the beam capacity
3.4.4 Effect of loading-plate size(lt)on the beam capacity
3.5 Modified Shear strength equat ion
3.6 Chapter Summary
Chapter 4 Shear strength of FRP-RC deep beams
4.1 Introduct ion
4.2 Shear mechanism
4.2.1 Failure mechanism of FRP-RC deep beams
4.3 Strut and Tie Method(STM)
4.3.1 Modeling of FRP-RC deep beams using Strut and Tie Method(STM)
4.3.2 Components of Strut and Tie Model
4.3.3 Calculation procedure
4.4 Jang et al.equat ions
4.5 K.Mohamed et al.equat ion
4.6 Comparat ive Analysis
4.7 Chapter Summary
Conclusion and Recommendations
References
Appendix
Acknowledgements
本文編號(hào):3492704
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/3492704.html
最近更新
教材專著