Spatiotemporal Analysis to Observe Activities Behavior and C
發(fā)布時間:2021-02-27 18:11
Location based social network(LBSN)is prevailing rapidly in China with increase and adoption of smart devices which provide a wide range of opportunities to observe and analyze the human activities behavior towards the use of LBSN.In LBSN,users socialize with each other by sharing their current location(also referred as "geolocation")in the form of a tweet(also referred as "check-in"),which contains(but not limited to)text,audio,video etc.,and allows users to disclose the places they visit and a...
【文章來源】:上海大學(xué)上海市 211工程院校
【文章頁數(shù)】:165 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
Chapter 1 Introduction
1.1 Literature Review
1.1.1 Check-in Behavior
1.1.2 Activities Behavior
1.2 Objectives of the Thesis
1.3 Thesis and its Substantiation
1.3.1 Chapters and Contributions
Chapter 2 Big Data, from Volume to Value
2.1 Introduction
2.2 Big Data Analytics
2.3 The Characteristics of Big Data
2.4 Benefits from Big Data
Chapter 3 We're all Connected: The Rise of the LBSN
3.1 Introduction
3.2 Social Media Analytics
3.3 Overview and History of Location-Based Services (LBS)
3.4 Overview of Location-Based Social Network(LBSN)
3.5 The Rise of Location Based Social Network
3.5.1 The web and online social networks
3.5.2 Geography and online social networks
3.5.3 The importance of places for the study of human movement
3.6 Services of LBSN
3.7 LBSN Check-in Behavior
3.7.1 Motivation to Engage in Check-in Behavior
3.8 LBSN Activities Behavior
Chapter 4 Study Area and Data Source
4.1 Study Area
4.2 Data Source
4.2.1 Check-in Data
4.2.1.1 Weibo Statistics
4.2.2 POI Data
4.3 Activities Behavior Analytics Framework
Chapter 5 Mapping it out: Density Variations and Activities Distribution
5.1 Introduction
5.2 Mathematical Formulation
5.3 Results
5.3.1 Density Variations and Check-ins Distribution
5.3.2 Density Variations and Activities Distribution
5.4 Conclusion
Chapter 6 Spatial Regression Analysis for Modeling Relationships
6.1 Introduction
6.2 Mathematical Formulation
6.3 Results
6.4 Conclusion
Chapter 7 Spatiotemporal Distribution Patterns of Activities
7.1 Introduction
7.2 Mathematical Formulation
7.2.1 Gravity Centre Analysis
7.2.2 Standard Deviational Ellipse(SDE) Analysis
7.3 Results
7.4 Conclusion
Chapter 8 Concluding Remarks
8.1 Conclusion
8.2 Possible Future Work
Reference
Research Outputs and Activities
Acknowledgements
【參考文獻】:
期刊論文
[1]基于多源LBS數(shù)據(jù)的職住平衡對比研究——以北京城區(qū)為例[J]. 趙鵬軍,曹毓書. 北京大學(xué)學(xué)報(自然科學(xué)版). 2018(06)
[2]基于居民行為周期特征的城市空間研究[J]. 鐘煒菁,王德. 地理科學(xué)進展. 2018(08)
[3]基于數(shù)字足跡的風(fēng)景名勝區(qū)旅游者時空結(jié)構(gòu)特征研究——以赴張家界景區(qū)的旅游者為例[J]. 賀小榮,李宗幸,李啟明,陳祖龍,折宇君. 湖南師范大學(xué)自然科學(xué)學(xué)報. 2018(01)
[4]基于微博語義分析的重慶主城區(qū)風(fēng)貌感知評價[J]. 易崢,李繼珍,冷炳榮,陳敏. 地理科學(xué)進展. 2017(09)
[5]開發(fā)區(qū)居住空間特征及其形成機制——對北京經(jīng)濟技術(shù)開發(fā)區(qū)的調(diào)查[J]. 馮健,項怡之. 地理科學(xué)進展. 2017(01)
[6]2000-2010年廣州市居住空間結(jié)構(gòu)演變及機制分析[J]. 周春山,羅仁澤,代丹丹. 地理研究. 2015(06)
[7]立足統(tǒng)籌,面向轉(zhuǎn)型的用地規(guī)劃技術(shù)規(guī)章——《城市用地分類與規(guī)劃建設(shè)用地標(biāo)準(zhǔn)(GB50137-2011)》闡釋[J]. 王凱,張菁,徐澤,徐穎. 城市規(guī)劃. 2012(04)
本文編號:3054610
【文章來源】:上海大學(xué)上海市 211工程院校
【文章頁數(shù)】:165 頁
【學(xué)位級別】:博士
【文章目錄】:
Abstract
Chapter 1 Introduction
1.1 Literature Review
1.1.1 Check-in Behavior
1.1.2 Activities Behavior
1.2 Objectives of the Thesis
1.3 Thesis and its Substantiation
1.3.1 Chapters and Contributions
Chapter 2 Big Data, from Volume to Value
2.1 Introduction
2.2 Big Data Analytics
2.3 The Characteristics of Big Data
2.4 Benefits from Big Data
Chapter 3 We're all Connected: The Rise of the LBSN
3.1 Introduction
3.2 Social Media Analytics
3.3 Overview and History of Location-Based Services (LBS)
3.4 Overview of Location-Based Social Network(LBSN)
3.5 The Rise of Location Based Social Network
3.5.1 The web and online social networks
3.5.2 Geography and online social networks
3.5.3 The importance of places for the study of human movement
3.6 Services of LBSN
3.7 LBSN Check-in Behavior
3.7.1 Motivation to Engage in Check-in Behavior
3.8 LBSN Activities Behavior
Chapter 4 Study Area and Data Source
4.1 Study Area
4.2 Data Source
4.2.1 Check-in Data
4.2.1.1 Weibo Statistics
4.2.2 POI Data
4.3 Activities Behavior Analytics Framework
Chapter 5 Mapping it out: Density Variations and Activities Distribution
5.1 Introduction
5.2 Mathematical Formulation
5.3 Results
5.3.1 Density Variations and Check-ins Distribution
5.3.2 Density Variations and Activities Distribution
5.4 Conclusion
Chapter 6 Spatial Regression Analysis for Modeling Relationships
6.1 Introduction
6.2 Mathematical Formulation
6.3 Results
6.4 Conclusion
Chapter 7 Spatiotemporal Distribution Patterns of Activities
7.1 Introduction
7.2 Mathematical Formulation
7.2.1 Gravity Centre Analysis
7.2.2 Standard Deviational Ellipse(SDE) Analysis
7.3 Results
7.4 Conclusion
Chapter 8 Concluding Remarks
8.1 Conclusion
8.2 Possible Future Work
Reference
Research Outputs and Activities
Acknowledgements
【參考文獻】:
期刊論文
[1]基于多源LBS數(shù)據(jù)的職住平衡對比研究——以北京城區(qū)為例[J]. 趙鵬軍,曹毓書. 北京大學(xué)學(xué)報(自然科學(xué)版). 2018(06)
[2]基于居民行為周期特征的城市空間研究[J]. 鐘煒菁,王德. 地理科學(xué)進展. 2018(08)
[3]基于數(shù)字足跡的風(fēng)景名勝區(qū)旅游者時空結(jié)構(gòu)特征研究——以赴張家界景區(qū)的旅游者為例[J]. 賀小榮,李宗幸,李啟明,陳祖龍,折宇君. 湖南師范大學(xué)自然科學(xué)學(xué)報. 2018(01)
[4]基于微博語義分析的重慶主城區(qū)風(fēng)貌感知評價[J]. 易崢,李繼珍,冷炳榮,陳敏. 地理科學(xué)進展. 2017(09)
[5]開發(fā)區(qū)居住空間特征及其形成機制——對北京經(jīng)濟技術(shù)開發(fā)區(qū)的調(diào)查[J]. 馮健,項怡之. 地理科學(xué)進展. 2017(01)
[6]2000-2010年廣州市居住空間結(jié)構(gòu)演變及機制分析[J]. 周春山,羅仁澤,代丹丹. 地理研究. 2015(06)
[7]立足統(tǒng)籌,面向轉(zhuǎn)型的用地規(guī)劃技術(shù)規(guī)章——《城市用地分類與規(guī)劃建設(shè)用地標(biāo)準(zhǔn)(GB50137-2011)》闡釋[J]. 王凱,張菁,徐澤,徐穎. 城市規(guī)劃. 2012(04)
本文編號:3054610
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/3054610.html
最近更新
教材專著