細(xì)粉砂土含水率對(duì)混凝土擴(kuò)盤樁抗壓破壞狀態(tài)影響研究
[Abstract]:The concrete expansion pile is derived from the ordinary concrete cast-in-place pile, and one or more load-bearing expanded plates are added to the ordinary concrete cast-in-place pile body. According to the geological conditions, a suitable soil layer is selected to increase the bearing capacity of the pile under compression or drawing. The practice shows that it has the advantages of high bearing capacity, small settlement and deformation, simple and quick construction, and so on. However, the geological conditions in practical engineering are varied and complex. When concrete pile is used, each plate may be placed in different soil layers. At present, most of the theoretical researches on the pile are based on putting the load plate in the clay. However, there are few studies on the effect of soil properties on the bearing capacity of sandy soil. It has been shown that the load bearing plate can be set in fine silty sand soil, the moisture content of soil layer and the compactness of soil layer have great influence on the bearing capacity of concrete pile with expanded plate. In order to improve the theoretical foundation of concrete expanded disc pile under vertical pressure, this paper is based on the previous research results of concrete expanded disc pile. The influence of the moisture content of fine silt on the failure state of soil around the bearing plate and the bearing capacity of the pile is further studied. The small model test and ANSYS finite element simulation are used to test the failure mechanism and the reliability of the bearing theory. Through the experimental study, it is found that the horizontal crack at the tip of the plate converges gradually to the "heart" shape of the pile body during loading, and finally slips along the crack, which indicates that the failure state of soil around the bearing plate accords with the theory of slip failure. The bearing capacity can be calculated according to this theory. At the same time, for the effect of moisture content on the research results, the test results show that when the moisture content of fine silty sand is in the range of 10%-17. 5%, the higher the moisture content is, the smaller the compressive capacity of the pile is. When the moisture content is higher than 14%, the compressive capacity decreases obviously. The results of finite element simulation analysis show that the moisture content of fine silty sand is in the range of 10- 18%, and when the moisture content is less than 14%, it has little effect on the bearing capacity and maximum displacement of the pile. When the moisture content is higher than 14%, the bearing capacity and the maximum displacement of the pile are greatly affected. Comparing the failure state and displacement-load curve recorded during the test with the result of finite element simulation analysis, the influence range and failure state of the soil around the pile are basically the same when the moisture content is the same. The variation trend of displacement-load curve is the same, and the variation rate of the curve is mainly due to the limitation of indoor small model test conditions and the result of simulation analysis is due to the pure ideal state. As a whole, the experimental results are consistent with the results of finite element simulation analysis, which shows that the conclusion of the analysis is reliable. Therefore, in engineering practice, the bearing plate is placed in fine silt with moisture content less than 14%. In this paper, the influence of moisture content on the failure state and bearing capacity of concrete pile in fine silt soil is studied by two methods: small model semi-plane pile test and finite element simulation analysis, and the influence of moisture content on the failure state and bearing capacity of concrete expanded sheet pile in fine silt is discussed. It makes up for the deficiency of neglecting the influence of soil moisture content on the vertical bearing capacity of the pile, and provides a theoretical basis for the application of concrete pile in fine silt soil.
【學(xué)位授予單位】:吉林建筑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU473.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉小偉;;微波爐法測(cè)試黏土含水率的可行性分析[J];黑龍江水利科技;2006年04期
2 葉森林;;混凝土生產(chǎn)中砂含水率的檢測(cè)與攪拌水量的控制[J];混凝土與水泥制品;1984年05期
3 沈鴻,程健敏,羅海霞,秦玨星,龔群協(xié),周建安,張鳳;煤堆場(chǎng)灑水頻率和強(qiáng)度研究[J];交通環(huán)保;1998年04期
4 蔡世杰;陳榮華;;蒸壓加氣混凝土砌塊含水率控制[J];墻材革新與建筑節(jié)能;2009年02期
5 張磊;郭海慶;謝興華;郭加艷;;一種新型含水率傳感器裝置[J];長江科學(xué)院院報(bào);2013年02期
6 齊劍峰;張成兵;宋雪琳;李鐸;;滑帶土含水率與力學(xué)參數(shù)關(guān)系試驗(yàn)研究[J];長江科學(xué)院院報(bào);2013年07期
7 黃琨;萬軍偉;陳剛;曾洋;;非飽和土的抗剪強(qiáng)度與含水率關(guān)系的試驗(yàn)研究[J];巖土力學(xué);2012年09期
8 施楚賢;;磚砌筑時(shí)的含水率對(duì)砌體抗壓和抗剪強(qiáng)度的影響[J];建筑技術(shù);1983年03期
9 單煒;劉紅軍;楊林;郭穎;孫玉英;;季凍區(qū)土質(zhì)路塹邊坡淺層含水率變化研究[J];巖土力學(xué);2008年S1期
10 蔡世杰;陳榮華;;探討蒸壓加氣混凝土砌塊含水率的控制[J];住宅產(chǎn)業(yè);2009年01期
相關(guān)會(huì)議論文 前6條
1 謝祖琪;劉建輝;余滿江;姚金霞;龐啟成;;秸稈收獲含水率與田間失水率的試驗(yàn)研究[A];全國丘陵山地農(nóng)機(jī)化技術(shù)發(fā)展高層論壇論文集[C];2011年
2 范利頻;劉學(xué)芹;;淤泥含水率與體積變化關(guān)系試驗(yàn)研究[A];第三屆全國巖土與工程學(xué)術(shù)大會(huì)論文集[C];2009年
3 周耀;王元豐;韓冰;;混凝土含水率對(duì)梁動(dòng)力性能影響研究[A];第19屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅱ冊(cè))[C];2010年
4 楊彤;楊清雷;張金利;劉成瑋;;ET封頂層設(shè)計(jì)與孔隙水運(yùn)移特性分析[A];國家安全地球物理叢書(九)——防災(zāi)減災(zāi)與國家安全[C];2013年
5 陶冶;;紅外技術(shù)在煙用紙張材料含水率快速測(cè)定上的應(yīng)用[A];上海市煙草系統(tǒng)2012年度優(yōu)秀學(xué)術(shù)論文集(工程技術(shù)類)[C];2011年
6 薛家翠;望勝玲;戴薛;張建飛;;森林地被可燃物含水率及林火高發(fā)期的研究[A];第二屆中國林業(yè)學(xué)術(shù)大會(huì)——S7 新形勢(shì)下的森林防火問題探討論文集[C];2009年
相關(guān)重要報(bào)紙文章 前3條
1 王新;原油含水量測(cè)定技術(shù)通過評(píng)定[N];中國化工報(bào);2009年
2 馮劍英;原油含水快速測(cè)定技術(shù)取得重大突破[N];中國石油報(bào);2009年
3 胡燕;淺談EPS泡塑制品的烘干[N];中國包裝報(bào);2001年
相關(guān)博士學(xué)位論文 前3條
1 李陳孝;微波空間波技術(shù)材料含水率檢測(cè)方法及裝置的研究[D];吉林大學(xué);2015年
2 李曉斌;運(yùn)用圖像處理技術(shù)在線監(jiān)測(cè)真空凍干果蔬含水率[D];山西農(nóng)業(yè)大學(xué);2013年
3 嚴(yán)耿升;干旱區(qū)土質(zhì)文物劣化機(jī)理及材料耐久性研究[D];蘭州大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 陳皓;高放廢物地質(zhì)庫緩沖材料在高溫高壓下的變形強(qiáng)度特性研究[D];廣西大學(xué);2015年
2 孫立軍;樂山機(jī)場(chǎng)紅層泥巖填料強(qiáng)度特性研究[D];成都理工大學(xué);2015年
3 袁媛;油井含水率信號(hào)的分析與特征提取[D];東北石油大學(xué);2015年
4 趙云婷;稠油井井口手工取樣工藝影響因素分析[D];東北石油大學(xué);2015年
5 李詩s,
本文編號(hào):2408707
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2408707.html