基于FESN的結構健康狀態(tài)智能預測研究
[Abstract]:In real life, large building structures and equipment will be damaged more or less in the course of service. If they are not detected and dealt with in time, they will often result in serious consequences for both human and financial resources. Therefore, structural health monitoring and diagnosis, Evaluation and prediction are particularly important. On the premise of structural health monitoring, this paper analyzes and extracts the structural damage characteristics and studies the damage trend of the structure in order to predict the trend of structural health state. The specific research contents are as follows: the signal preprocessing method based on empirical wavelet transform (Empirical Wavelet Transform,) is studied, and the spectrum of structural damage acceleration vibration signal collected by EWT is segmented adaptively by EWT. An appropriate and orthogonal wavelet bandpass filter bank is constructed to obtain the amplitude modulation-frequency modulation (AM-FM) component with compact support Fourier spectrum, and then extract the component which contains abundant damage information, and then carry on the Hilbert transform to it. The instantaneous frequency and amplitude are calculated. The experimental results show that the instantaneous frequency can reflect the stiffness change of the structure before and after the damage, and the instantaneous frequency will be obviously different with the different location of the detection node or the different damage condition. Therefore, taking it as a predictor of structural health state can well reflect the changing trend of structural health state and lay a foundation for further prediction of damage trend. The nonlinear time series prediction method based on fuzzy theory and echo state network is studied. The reasoning algorithm, the training process and the key parameters of the network are studied in detail. And the stability of the network algorithm is strictly defined. The experimental results show that choosing appropriate parameters has certain influence on the prediction accuracy. The prediction accuracy of hyperbolic tangent (tanh) neuron activation function is higher than that of leaking (leaky) type, compared with the traditional echo state network. Fuzzy echo state network (Fuzzy Echo State Network,) has strong nonlinear approximation ability, high prediction accuracy and ability to deal with large sample data, and the training efficiency is also improved to a certain extent. It provides a theoretical basis for the prediction of the health state of practical engineering structures. In this paper, the structure health trend prediction method based on FESN is studied. The AM-FM component with damage information is extracted by EWT method, and the instantaneous frequency is obtained by Hlibert transform, which is used as the input of the prediction model. The single degree of freedom structure and multi-degree-of-freedom structure model are simulated by FESN and applied to the prediction of practical engineering data. The experimental results show that the FESN prediction model is more close to the real value and the prediction accuracy is higher.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU317
【參考文獻】
相關期刊論文 前10條
1 喬俊飛;李瑞祥;柴偉;韓紅桂;;基于PSO-ESN神經網絡的污水BOD預測[J];控制工程;2016年04期
2 黃南天;張書鑫;蔡國偉;徐殿國;;采用EWT和OCSVM的高壓斷路器機械故障診斷[J];儀器儀表學報;2015年12期
3 馮博;李輝;鄭海起;;基于經驗小波變換的軸承故障診斷研究[J];軸承;2015年12期
4 姚顯雙;倫淑嫻;;基于回聲狀態(tài)網的光伏發(fā)電量預測[J];電子設計工程;2015年22期
5 林健;倫淑嫻;;基于改進回聲狀態(tài)網的時間序列預測[J];渤海大學學報(自然科學版);2015年03期
6 楊斌;程軍圣;;基于自適應最稀疏時頻分析的結構損傷檢測方法[J];振動工程學報;2015年04期
7 田中大;高憲文;李樹江;王艷紅;;遺傳算法優(yōu)化回聲狀態(tài)網絡的網絡流量預測[J];計算機研究與發(fā)展;2015年05期
8 李志農;朱明;褚福磊;肖堯先;;基于經驗小波變換的機械故障診斷方法研究[J];儀器儀表學報;2014年11期
9 崔建國;王青天;滑嬌嬌;樸春雨;齊義文;蔣麗英;;基于DMS和LS-SVM的復合材料結構健康預測方法[J];材料導報;2014年16期
10 謝宗蕻;劉海涵;張子龍;;層間增韌復合材料層合板低速沖擊損傷預測[J];南京航空航天大學學報;2013年05期
相關博士學位論文 前3條
1 楊飛;基于回聲狀態(tài)網絡的交通流預測模型及其相關研究[D];北京郵電大學;2012年
2 王建民;基于回聲狀態(tài)網絡的非線性時間序列預測方法研究[D];哈爾濱工業(yè)大學;2011年
3 劉義艷;結構健康監(jiān)測與智能診斷技術研究[D];長安大學;2010年
相關碩士學位論文 前2條
1 齊紅云;基于模糊雙曲正切模型的回聲狀態(tài)網改進及其應用研究[D];渤海大學;2016年
2 范廣露;基于回聲狀態(tài)網絡的設備健康狀態(tài)監(jiān)測與預測方法[D];長安大學;2012年
,本文編號:2396119
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2396119.html