FRP及鋼筋混凝土約束鋼管混凝土短柱軸壓承載力研究
[Abstract]:With the widespread application of concrete-filled steel tube members, the shortcomings of concrete filled steel tube members are exposed, and the concrete filled steel tube members with better performance make up for the shortcomings of concrete filled steel tubular members and have a greater development prospect. FRP confined concrete filled steel tubular members and composite columns are widely studied for their advantages of convenient construction, high bearing capacity and good durability. At present, there is little research on FRP- concrete-steel tube composite solid square short columns, and the formula of axial compression capacity of FRP- concrete-steel tube composite square short columns and square high strength concrete filled steel tube composite columns is lack of theoretical basis. And too much simplification. In this paper, the method of theoretical analysis and numerical simulation is used to deduce the axial bearing capacity formulas of two types of members according to the stress mechanism of FRP- concrete filled steel tube composite solid square short columns and square high strength concrete filled steel tube composite columns. Static numerical analysis of two kinds of components is carried out. The main contents of this paper are as follows: taking the FRP- concrete-steel tube composite solid square short column as the research object, according to the different constraint action of sandwich concrete, it can be divided into effective confinement zone and non-effective constraint zone; At the same time, considering the double constraint of sandwich concrete, the square FRP cloth is transformed into circular FRP cloth. Based on the unified strength theory and taking into account the influence of the intermediate principal stress, the ratio of material tension to compression and the radius of chamfer, the formula for calculating the axial compression capacity of FRP- concrete-steel tube composite solid square short columns is derived. The theoretical calculation results are in good agreement with the experimental results, and the effects of the intermediate principal stress coefficient, lateral pressure coefficient, chamfer radius and ratio of diameter to thickness of steel pipe on axial compression capacity are analyzed. Considering the influence of the intermediate principal stress and the ratio of material tension and compression to the ultimate bearing capacity of the newly proposed square high strength concrete filled steel tube composite columns, the effective constraint coefficient and the non-effective constraint coefficient are introduced to consider the difference of the confinement effect of stirrups on concrete filled steel tube. The external stirrups confined concrete of steel tube is divided into effective confinement zone and non-effective confinement zone. The square section is equivalent to a circular section to consider the double confinement effect of the steel tube and the peripheral reinforced concrete subjected to the core concrete of the steel tube. A new method for calculating the ultimate bearing capacity of concrete filled square steel tube columns under axial compression is presented. The theoretical results are in good agreement with the experimental results, and the formula is proved to be correct. The analysis of the influence law of each parameter shows that the bearing capacity of square high strength concrete filled steel tube composite columns increases with the increase of lateral pressure coefficient, the influence coefficient of intermediate principal stress, the ratio of material tension to compression and the ratio of longitudinal reinforcement. With the increase of diameter to thickness ratio of steel pipe, it decreases. The numerical simulation of FRP- concrete-steel pipe composite solid square short column and composite column is carried out by using ANSYS software. The rationality of the numerical simulation is verified by comparing with the experimental value and the theoretical calculation value of the member. The numerical simulation is in good agreement with the theoretical calculation, which ensures the correctness of the obtained deformation diagram and stress field distribution diagram, and analyzes the mechanical characteristics, bearing capacity influence parameters and failure form of the member.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU398.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁猛;李明海;王偉;梅佐云;宋曉光;秘星;;FRP約束混凝土圓柱應(yīng)力-應(yīng)變關(guān)系模型[J];建筑結(jié)構(gòu);2016年S1期
2 龍躍凌;王英濤;蔡健;陳慶軍;;帶約束拉桿方形鋼管混凝土短柱壓彎承載特性[J];工業(yè)建筑;2016年03期
3 龍躍凌;蔡健;王英濤;楊春;陳慶軍;左志亮;;帶約束拉桿矩形鋼管混凝土短柱抗震性能試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2016年02期
4 劉陽;郭子雄;賈磊鵬;陳慶猛;;核心鋼管混凝土疊合短柱軸壓性能及設(shè)計(jì)方法研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2015年12期
5 任慧韜;郭星;王蘇巖;;FRP管-混凝土-鋼管組合短柱軸壓性能試驗(yàn)及有限元分析[J];大連理工大學(xué)學(xué)報(bào);2015年06期
6 趙均海;杜文超;張常光;;CFRP-方鋼管混凝土軸壓短柱承載力分析[J];建筑科學(xué)與工程學(xué)報(bào);2015年06期
7 王英濤;蔡健;龍躍凌;楊春;陳慶軍;左志亮;;帶約束拉桿方形截面鋼管混凝土短柱抗震性能試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2015年07期
8 王英濤;蔡健;龍躍凌;陳慶軍;;帶約束拉桿方形鋼管混凝土短柱偏壓工作機(jī)理[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期
9 高丹盈;王代;;FRP-混凝土-鋼管組合方柱軸壓性能及承載力計(jì)算模型[J];中國公路學(xué)報(bào);2015年02期
10 呂學(xué)濤;楊華;張玉琢;王微微;;高溫作用后圓鋼管鋼筋混凝土軸壓短柱力學(xué)性能試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2015年02期
相關(guān)博士學(xué)位論文 前1條
1 王英濤;帶約束拉桿矩形鋼管混凝土短柱抗震性能[D];華南理工大學(xué);2015年
相關(guān)碩士學(xué)位論文 前9條
1 鄭博圳;帶約束拉桿矩形鋼管混凝土短柱抗震性能試驗(yàn)研究[D];華南理工大學(xué);2016年
2 宗文;倒角半徑對碳纖維布約束型鋼混凝土矩形短柱軸壓性能的影響[D];合肥工業(yè)大學(xué);2016年
3 杜長銳;箍筋約束圓鋼管混凝土柱力學(xué)性能研究[D];哈爾濱工業(yè)大學(xué);2015年
4 鄭錦洪;勁化帶約束拉桿方形鋼管混凝土柱抗震性能研究[D];華南理工大學(xué);2015年
5 廖祥盛;帶約束拉桿方形鋼管混凝土短柱抗震性能研究[D];華南理工大學(xué);2014年
6 劉玉雷;GFRP管—混凝土—鋼管混凝土組合柱軸壓性能試驗(yàn)研究[D];大連理工大學(xué);2014年
7 王娟;FRP管混凝土軸壓短柱承載力研究[D];長安大學(xué);2012年
8 馬清華;帶約束拉桿L形鋼管混凝土短柱的偏壓基本力學(xué)性能研究[D];華南理工大學(xué);2010年
9 孫寧;纖維布約束混凝土矩形柱的拐角效應(yīng)分析及試驗(yàn)研究[D];東南大學(xué);2006年
,本文編號:2381770
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2381770.html