遠(yuǎn)程挖掘機(jī)故障診斷系統(tǒng)設(shè)計(jì)研究
[Abstract]:Excavator is one of the most widely used construction machinery. The reliability and safety standards of excavators are becoming more and more important, and the importance of fault diagnosis is becoming more and more important. However, the current excavator fault diagnosis system developed by domestic enterprises has simple knowledge base, limited fault diagnosis scope, can not replace maintenance experts to quickly diagnose and accurately locate excavator faults, and has low reusability. Platform independence and other shortcomings. Aiming at the above problems, this paper puts forward the establishment of remote excavator fault diagnosis system. The specific work includes: summarizing the cooperative diagnosis system architecture between enterprise and remote end, based on the original framework of B / S (Browser/Server) diagnostic expert system. According to the system design requirements, a remote excavator fault diagnosis system framework is constructed. The system composition and working principle of rotary hydraulic system are analyzed. Aiming at the shortcomings of the traditional expert system in knowledge acquisition, this paper combines the fault tree analysis method, establishes the fault tree model based on the summarized theory knowledge and the expert practical diagnosis experience knowledge, and optimizes the knowledge acquisition method. The knowledge representation of excavator fault is improved by combining production rule representation and frame representation. In the aspect of knowledge base, the knowledge entity is analyzed based on the relation model of E-R (Entity Relationship Diagram), and the knowledge base of excavator fault is constructed by using MySQL database. Furthermore, according to the characteristics of excavator fault knowledge representation, the forward reasoning strategy and corresponding explanation mechanism of rule frame fusion are designed. On the basis of theoretical research, the prototype system of remote excavator fault diagnosis is developed by using Django framework and Python,JS (JavaScript), HTML (Hyper Text Markup Language) language. The test results are good, the fault knowledge of excavator is counted effectively, the fault diagnosis and accurate location are realized in place of maintenance expert, and the maintenance efficiency of excavator fault is greatly improved.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU621
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 任宇;;中國與主要發(fā)達(dá)國家智能制造的比較研究[J];工業(yè)經(jīng)濟(jì)論壇;2015年02期
2 馬創(chuàng)新;;論知識(shí)表示[J];現(xiàn)代情報(bào);2014年03期
3 羅天洪;楊彩霞;孫冬梅;;基于故障樹的汽車起重機(jī)液壓故障診斷專家系統(tǒng)[J];機(jī)械科學(xué)與技術(shù);2013年04期
4 賈宏;姚繼亮;;挖掘機(jī)無回轉(zhuǎn)動(dòng)作故障分析與排除[J];工程機(jī)械;2013年04期
5 李紅衛(wèi);楊東升;孫一蘭;韓娟;;智能故障診斷技術(shù)研究綜述與展望[J];計(jì)算機(jī)工程與設(shè)計(jì);2013年02期
6 王國彪;何正嘉;陳雪峰;賴一楠;;機(jī)械故障診斷基礎(chǔ)研究“何去何從”[J];機(jī)械工程學(xué)報(bào);2013年01期
7 王渠;;液壓挖掘機(jī)回轉(zhuǎn)故障的分析及排除[J];工程機(jī)械與維修;2012年11期
8 邵輝;胡偉石;羅繼亮;宋軍;;自動(dòng)挖掘機(jī)的動(dòng)作規(guī)劃[J];控制工程;2012年04期
9 王偉嘉;汪海航;;基于專家系統(tǒng)解釋機(jī)制的報(bào)告生成方法[J];計(jì)算機(jī)應(yīng)用;2012年S1期
10 段壯志;張宗強(qiáng);張成海;;基于故障樹分析法的挖掘機(jī)故障診斷知識(shí)庫設(shè)計(jì)[J];長春工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年01期
相關(guān)碩士學(xué)位論文 前10條
1 李在成;柔性涂裝輸送線報(bào)警及故障診斷專家系統(tǒng)研究[D];江蘇大學(xué);2016年
2 劉飛;國產(chǎn)中型挖掘機(jī)液壓系統(tǒng)故障分析及查詢軟件設(shè)計(jì)[D];山東大學(xué);2015年
3 李民曦;基于故障樹的航空發(fā)動(dòng)機(jī)故障診斷研究[D];中國民航大學(xué);2014年
4 宋佳昊;大噸位履帶起重機(jī)故障信息管理與故障診斷系統(tǒng)[D];上海交通大學(xué);2014年
5 龐斌;雷達(dá)故障診斷專家系統(tǒng)的設(shè)計(jì)和實(shí)現(xiàn)[D];吉林大學(xué);2013年
6 胡姍;基于FTA地源熱泵熱水系統(tǒng)故障診斷專家系統(tǒng)研究[D];湖南大學(xué);2013年
7 申浩;波音737NG反推故障診斷專家系統(tǒng)研究[D];上海交通大學(xué);2012年
8 辛朝陽;全液壓振動(dòng)壓路機(jī)液壓故障診斷專家系統(tǒng)的研究[D];武漢理工大學(xué);2012年
9 孟東;基于支持向量機(jī)的挖掘機(jī)故障診斷系統(tǒng)的研究[D];重慶大學(xué);2009年
10 杜鵬;面向?qū)ο蟮囊簤和诰驒C(jī)故障診斷系統(tǒng)研究[D];吉林大學(xué);2008年
,本文編號(hào):2282131
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2282131.html