工程車輛全景環(huán)視影像系統(tǒng)的研究
[Abstract]:With the rapid development of Chinese economy, the heat of the real estate market is not decreasing, the investment of various infrastructure projects is continuing, and the demand for engineering vehicles is increasing day by day. Construction vehicles play a pivotal role, but also accompanied by a lot of safety problems. The working environment of engineering vehicles is complex and the body is huge. It is difficult to ensure safety only by rearview mirror. With the rapid development of modern science and technology, many electronic products of engineering vehicles emerge as the times require, and it is an inevitable trend to apply the advanced frontier technology to the traditional engineering vehicle industry. The panoramic circle view image system can provide the overlooking image around the car body in real time, effectively eliminate the blind area of the field of vision, and provide a very effective auxiliary function for the driver. It is of great practical value to study the system and apply it to the engineering vehicle. In this paper, the background and research status of panoramic circle view image system are analyzed, the key technology of the system is deeply studied, and the concrete implementation scheme is given according to the actual characteristics of engineering vehicles. The system uses six fish-eye cameras to collect images around the construction vehicle. Because the collected images have fish-eye distortion, the system first corrects the distortion of the images, and then converts the corrected images into the overlooking images by perspective transformation. Finally, the six images are stitched and fused. In the fish-eye correction algorithm, this paper analyzes several commonly used correction algorithms, and through simulation experiments to compare the results, finally determine the use of calibration method to correct. In this paper, the principle and method of calibration are introduced in detail, and the calibration of camera is realized step by step. The experimental results show that the calibration method can meet the requirements of the system. In the stage of image overhead transformation, this paper analyzes its transformation model, determines the scheme of calculating perspective transformation matrix by looking for corner points, and gives the method of selecting reference points. In the image matching algorithm, this paper introduces the matching principle and the realization method of SIFT algorithm in detail, studies and improves based on the traditional SIFT algorithm, and proposes an improved SIFT algorithm based on partial feature extraction. The algorithm only extracts feature points in the coincidence region, which greatly reduces the number of feature points and operation time, and improves the matching success rate and efficiency. In this paper, the method of determining the coincidence region is given, and the effectiveness of the improved algorithm is verified by experimental comparison. In the image fusion algorithm, this paper studies several commonly used fusion algorithms based on pixel level, and selects the gradually in and out fusion algorithm through simulation comparison. When the brightness difference between the two images is large, the image transition is not natural, and the splicing seam can not be completely eliminated. In order to solve this problem, this paper improves the incremental and gradual out algorithm, calculates and compares the average gray values of the coincidence region, and then adjusts the gray values of the two images to similar values and then fuses them together. Experiments show that the improved algorithm can effectively eliminate the stitching trace and make the fusion image more natural. In this paper, the algorithms of panoramic circle image system are studied, and the algorithms of fish-eye correction, image matching and image fusion are improved, the visual effect of panoramic image is improved, and the complexity of the algorithm is reduced effectively. It has good application prospect and value.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU603;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許超;聶詩良;;基于SURF和改進(jìn)漸入漸出法的圖像拼接算法[J];數(shù)字技術(shù)與應(yīng)用;2016年12期
2 何亞黎;袁義;;全景圖像拼接關(guān)鍵技術(shù)研究[J];信息化建設(shè);2016年03期
3 魏利勝;周圣文;張平改;孫駟洲;;基于雙經(jīng)度模型的魚眼圖像畸變矯正方法[J];儀器儀表學(xué)報(bào);2015年02期
4 韓迎輝;;基于改進(jìn)掃描線逼近的魚眼圖輪廓提取算法的研究[J];電子器件;2013年06期
5 王曉麗;戴華陽;余濤;謝東海;吳俁;;基于多分辨率融合的無人機(jī)圖像拼接勻色研究[J];測(cè)繪通報(bào);2013年06期
6 白廷柱;侯喜報(bào);;基于SIFT算子的圖像匹配算法研究[J];北京理工大學(xué)學(xué)報(bào);2013年06期
7 陳建明;曹永剛;;汽車電子安全技術(shù)的現(xiàn)狀及其發(fā)展策略[J];價(jià)值工程;2013年01期
8 蘇子孟;;工程機(jī)械行業(yè)面臨形勢(shì)和當(dāng)前主要工作[J];液壓氣動(dòng)與密封;2012年12期
9 韓昕;;工程機(jī)械行業(yè)發(fā)展趨勢(shì)概覽[J];今日工程機(jī)械;2012年21期
10 程勁波;;我國工程機(jī)械發(fā)展趨勢(shì)初探[J];科技信息;2011年16期
相關(guān)博士學(xué)位論文 前2條
1 唐晏;基于無人機(jī)采集圖像的植被識(shí)別方法研究[D];成都理工大學(xué);2014年
2 黃登山;像素級(jí)遙感影像融合方法研究[D];中南大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 李星星;大比例尺多視角無人機(jī)遙感圖像拼接技術(shù)研究[D];杭州師范大學(xué);2015年
2 陳澤茂;基于全景視覺的汽車安全駕駛輔助系統(tǒng)的平臺(tái)設(shè)計(jì)與實(shí)現(xiàn)[D];華南理工大學(xué);2014年
3 楊楊;無人機(jī)航拍視頻圖像實(shí)時(shí)拼接軟件系統(tǒng)的設(shè)計(jì)與開發(fā)[D];北京工業(yè)大學(xué);2013年
4 劉新明;基于全景視覺的汽車輔助駕駛系統(tǒng)研究與實(shí)現(xiàn)[D];北京交通大學(xué);2013年
5 趙琦;基于魚眼鏡頭的全景圖像展開研究[D];長春理工大學(xué);2013年
6 周宇浩崴;基于DSP嵌入式平臺(tái)多路實(shí)時(shí)視頻拼接技術(shù)[D];上海交通大學(xué);2013年
7 韓文超;基于POS系統(tǒng)的無人機(jī)遙感圖像拼接技術(shù)研究與實(shí)現(xiàn)[D];南京大學(xué);2011年
8 張偉;魚眼圖像校正算法研究[D];南京郵電大學(xué);2011年
9 儀,
本文編號(hào):2247831
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2247831.html