高溫下預(yù)應(yīng)力混凝土疊合板抗火性能及其承載力研究
本文選題:預(yù)應(yīng)力混凝土疊合板 + 抗火性能 ; 參考:《西安建筑科技大學(xué)》2017年碩士論文
【摘要】:建筑火災(zāi)是發(fā)生次數(shù)最多、損失最為嚴(yán)重的主要災(zāi)害之一,隨著預(yù)應(yīng)力混凝土疊合板的廣泛應(yīng)用,人們逐漸重視對(duì)其抗火性能研究。預(yù)應(yīng)力混凝土疊合板是一種實(shí)用的裝配整體式樓板,具有預(yù)制裝配式樓板和現(xiàn)澆整體式樓板兩方面優(yōu)點(diǎn),即整體剛度好、抗震性能高、施工簡(jiǎn)便及工期較短等優(yōu)點(diǎn)。預(yù)應(yīng)力混凝土疊合板已經(jīng)應(yīng)用到了很多項(xiàng)目上,創(chuàng)造了良好的社會(huì)效益。因此,研究預(yù)應(yīng)力混凝土疊合板的抗火性能是至關(guān)重要的。本文的主要工作如下:(1)運(yùn)用ANSYS軟件對(duì)兩種預(yù)應(yīng)力混凝土疊合板進(jìn)行了瞬態(tài)熱分析,得到了不同升溫時(shí)間下疊合板板截面的溫度場(chǎng);對(duì)兩種疊合板進(jìn)行熱-結(jié)構(gòu)耦合分析,得到了升溫180min時(shí)兩種疊合板的應(yīng)力云圖、應(yīng)變?cè)茍D及跨中豎向位移;結(jié)果表明,在疊合板的疊合層底部配受拉鋼筋其抗火性能要優(yōu)于標(biāo)準(zhǔn)的疊合板。(2)基于構(gòu)件截面等效強(qiáng)度的原則,把高溫下的鋼筋混凝土受彎構(gòu)件截面等效成常溫下的鋼筋混凝土受彎構(gòu)件截面,提出了高溫下受彎構(gòu)件截面承載力的二臺(tái)階模型計(jì)算方法;運(yùn)用ANSYS軟件對(duì)單面升溫的鋼筋混凝土簡(jiǎn)支梁的正截面受彎承載力進(jìn)行分析;結(jié)果表明,公式計(jì)算值與ANSYS軟件分析結(jié)果符合較好。(3)在二臺(tái)階模型的計(jì)算方法下,考慮到板的受拉薄膜效應(yīng),根據(jù)雙向板的板塊平衡法和能量法,分別計(jì)算出高溫下預(yù)應(yīng)力混凝土疊合板的極限荷載;結(jié)果表明,高溫條件下能量法的計(jì)算結(jié)果比板塊平衡法的計(jì)算結(jié)果保守,具有一定的安全冗余度。(4)運(yùn)用能量法對(duì)預(yù)應(yīng)力混凝土疊合板進(jìn)行抗火設(shè)計(jì)。對(duì)不同耐火等級(jí)下民用建筑應(yīng)使用的預(yù)應(yīng)力混凝土疊合板的種類給出了建議;提出了確定不同板型疊合板在不同溫度下極限承載力表格的方法。
[Abstract]:Building fire is one of the most frequent and serious disasters. With the wide application of prestressed concrete composite slab, people pay more and more attention to the study of its fire resistance. Prestressed concrete composite slab is a kind of practical assembly integral floor slab, which has the advantages of prefabricated assembly floor and cast-in-place integral floor, such as good overall stiffness, high seismic performance, simple construction and short construction period, etc. Prestressed concrete composite slab has been applied to many projects and has created good social benefits. Therefore, it is very important to study the fire resistance of prestressed concrete composite slab. The main work of this paper is as follows: (1) the transient thermal analysis of two kinds of prestressed concrete composite slab is carried out by using ANSYS software, and the temperature field of the cross-section of the composite slab is obtained under different heating time, and the thermal-structural coupling analysis is carried out for the two kinds of composite slab. The stress cloud, strain cloud and vertical displacement of the two laminated plates are obtained when the temperature is raised by 180min, and the results show that, The fire resistance of tensile reinforcement at the bottom of the laminated plate is superior to that of the standard laminated plate. (2) based on the principle of the equivalent strength of the section of the member, The section of reinforced concrete flexural member at high temperature is equivalent to that of reinforced concrete flexural member at normal temperature, and a two-step model method for calculating the bearing capacity of flexural member section at high temperature is proposed. The flexural bearing capacity of reinforced concrete simply supported beams with single side heating is analyzed by ANSYS software, and the results show that the calculated values of the formulas are in good agreement with the results of ANSYS software. According to the plate equilibrium method and energy method of bidirectional slab, the ultimate loads of prestressed concrete composite slab at high temperature are calculated according to the tensile film effect of the slab, and the results show that, The results of energy method under high temperature are conservative than those of plate equilibrium method, and have a certain degree of safety redundancy. The energy method is used to design the fire resistance of prestressed concrete composite slab. The types of prestressed concrete laminated slabs for civil buildings with different fire resistance grades are suggested, and the method for determining the ultimate bearing capacity of different plate type composite plates at different temperatures is presented.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU378;TU352.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳方伯;鄧?yán)?劉彪;李鈞;陳賽國(guó);;四邊簡(jiǎn)支單向預(yù)應(yīng)力雙向配筋混凝土疊合樓板試驗(yàn)研究[J];建筑結(jié)構(gòu);2014年05期
2 許清風(fēng);韓重慶;李向民;陳振龍;;不同持荷水平下預(yù)應(yīng)力混凝土空心板耐火極限試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2013年03期
3 鄭文忠;閆凱;王英;;預(yù)應(yīng)力混凝土結(jié)構(gòu)抗火研究進(jìn)展[J];建筑結(jié)構(gòu)學(xué)報(bào);2011年12期
4 鄭文忠;侯曉萌;陳偉宏;;火災(zāi)后預(yù)應(yīng)力混凝土簡(jiǎn)支板力學(xué)性能試驗(yàn)[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2011年02期
5 董毓利;;用變形和分解原理求混凝土板的受拉薄膜效應(yīng)[J];力學(xué)學(xué)報(bào);2010年06期
6 王剛;王清湘;劉士潤(rùn);;鋼筋混凝土板的壓力膜效應(yīng)承載力計(jì)算方法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2010年03期
7 侯曉萌;鄭文忠;;火災(zāi)后預(yù)應(yīng)力混凝土連續(xù)板力學(xué)性能試驗(yàn)與分析[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
8 王振清;蘇娟;王永軍;梁文彥;;火災(zāi)下鋼筋混凝土樓板的薄膜效應(yīng)分析[J];哈爾濱工程大學(xué)學(xué)報(bào);2009年08期
9 陳適才;任愛(ài)珠;王靜峰;陸新征;;鋼筋混凝土樓板火災(zāi)反應(yīng)數(shù)值計(jì)算模型[J];工程力學(xué);2008年03期
10 李國(guó)強(qiáng);郭士雄;周昊圣;;火災(zāi)下鋼結(jié)構(gòu)建筑樓板的薄膜效應(yīng)模型驗(yàn)證及實(shí)用方法[J];建筑結(jié)構(gòu)學(xué)報(bào);2007年05期
相關(guān)博士學(xué)位論文 前2條
1 蘇娟;火災(zāi)作用下鋼筋混凝土結(jié)構(gòu)非線性分析[D];哈爾濱工程大學(xué);2008年
2 王中強(qiáng);無(wú)粘結(jié)預(yù)應(yīng)力混凝土扁梁抗火性能的試驗(yàn)研究和理論分析[D];中南大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 方猛;受火災(zāi)作用鋼筋混凝土受彎構(gòu)件的承載力分析與簡(jiǎn)化計(jì)算[D];山東建筑大學(xué);2013年
2 陳賽國(guó);四邊簡(jiǎn)支PK預(yù)應(yīng)力疊合樓板試驗(yàn)與分析[D];湖南大學(xué);2012年
3 漆雅慶;火災(zāi)下鋼筋混凝土構(gòu)件的非線性有限元分析研究[D];華南理工大學(xué);2011年
4 周鯤鵬;PK預(yù)應(yīng)力雙向疊合樓板的試驗(yàn)研究與應(yīng)用[D];湖南大學(xué);2006年
,本文編號(hào):2017063
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2017063.html