玄武巖纖維含氯鹽補償收縮混凝土抗碳化性能試驗研究
本文選題:混凝土碳化 + 碳化周期; 參考:《安徽理工大學(xué)》2017年碩士論文
【摘要】:自從混凝土問世以來,混凝土就被建筑行業(yè)廣泛的使用,但隨著建筑行業(yè)的不斷發(fā)展,混凝土耐久性問題也變得日益突出。為改善混凝土耐久性問題,通過在混凝土中摻入玄武巖纖維和HCSA型膨脹劑,使用內(nèi)摻氯鹽的方法來模擬海邊混凝土常年受氯鹽侵蝕的情況。試驗中氯鹽摻量分別為1 kg/m3、2kg/m3、3 kg/m3、4 kg/m3,HCSA型膨脹劑摻量分別為8%、10%、12%,玄武巖纖維摻量分別為0和3 kg/m3,共56組壓拉強度試驗。混凝土碳化試驗參數(shù)選擇壓拉強度試驗中較優(yōu)的五組,進行了碳化試驗。玄武巖纖維含氯鹽補償收縮混凝土壓拉試驗結(jié)果表明:當(dāng)玄武巖纖維摻量和膨脹劑摻量相同時,混凝土的壓拉強度值均隨著氯鹽摻量的增加而提高。與素混凝土相比,當(dāng)氯鹽摻量為4 kg/m3時,含氯鹽混凝土、含氯鹽補償收縮混凝土、玄武巖纖維含氯鹽補償收縮混凝土的抗壓強度值分別增加了 23.6%、25.1%和26.4%,劈裂抗拉強度值分別增加了 4.8%、8.8%和31.3%,因此玄武巖纖維的加入,對混凝土劈裂抗拉強度的改善要遠(yuǎn)大于對抗壓強度的改善。此外,膨脹劑摻量為8%時,混凝土壓拉強度值最好,這是由于合適的膨脹劑摻量能有效改善混凝土內(nèi)部的微裂縫,從而提高混凝土的密實度,增強了混凝土的壓拉強度值。玄武巖纖維含氯鹽補償收縮混凝土碳化試驗結(jié)果表明:與素混凝土相比,當(dāng)氯鹽摻量、膨脹劑摻量和玄武巖纖維摻量分別為4 kg/m3、29.6 kg/m3和3 kg/m3時,混凝土壓拉強度性能達到最佳,且此時抗碳化能力也較好;同時,試塊在3 d、7d、14d和28 d時的抗碳化能力與素混凝土相比分別提高了 12.9%、19.7%、7.2%和5.8%。碳化周期為28 d時,最小碳化深度值為8.46mm;炷猎缙谔蓟俣雀哂诤笃谔蓟俣,主要是因為碳化早期的混凝土有利于碳化反應(yīng)進行,生成大量的碳化產(chǎn)物CaCO3后,會附著在混凝土水化產(chǎn)物Ca(OH)2的表面,從而降低了混凝土的碳化速度。
[Abstract]:Since the advent of concrete, concrete has been widely used in the construction industry, but with the continuous development of the construction industry, the durability of concrete has become increasingly prominent. In order to improve the durability of concrete, by adding basalt fiber and HCSA type expansion agent into concrete, the method of adding chloride salt into concrete is used to simulate the perennial chloride corrosion of seaside concrete. In the experiment, the chloride content was 1 kg / m ~ (3) ~ 2 kg / m ~ (3) ~ 3 kg / m ~ (3) ~ 4 kg 路m ~ (3) ~ (-1) HCSA type dilatant was 8 ~ 10%, and the basalt fiber content was 0 and 3 kg / m ~ (3) respectively. 56 groups of compressive and tensile strength tests were carried out. The carbonation test parameters of concrete were selected five groups of which were better in compressive tensile strength test and carbonation test was carried out. The results of compressive and tensile tests show that when the content of basalt fiber and dilatant is the same, the compressive strength of concrete increases with the increase of chloride content. Compared with plain concrete, when the chloride content is 4 kg/m3, the concrete with chloride salt compensates for shrinkage. The compressive strength of basalt fiber reinforced concrete with chloride salt compensation is increased by 23.625% and 26.4% respectively, and the splitting tensile strength value increases by 4.880% and 31.3wt%, respectively, so the basalt fiber is added. The improvement of splitting tensile strength of concrete is much greater than that of compressive strength. In addition, when the amount of expansive agent is 8, the compressive tensile strength of concrete is the best, which is due to the fact that the appropriate amount of expansive agent can effectively improve the micro-cracks in concrete, thus increase the compactness of concrete and enhance the compressive tensile strength of concrete. The carbonation test results of basalt fiber containing chloride salt compensated shrinkage concrete show that the compressive and tensile strength of concrete is the best when the content of chlorine salt, expansion agent and basalt fiber is 4 kg / m ~ (3) 29.6 kg/m3 and 3 kg/m3, respectively, compared with plain concrete. At the same time, the carbonation resistance of the test blocks at 3 d ~ 7 d ~ (14 d) and 28 d was increased by 12.9% ~ 19.7% and 5.8%, respectively, compared with that of plain concrete. When the carbonization period is 28 days, the minimum carbonation depth is 8.46 mm. The rate of early carbonation of concrete is higher than that of later carbonation, mainly because the early carbonation of concrete is favorable to the carbonation reaction, and a large number of carbonation products, CaCO3, will attach to the surface of concrete hydration product Ca(OH)2 after the formation of a large number of carbonation products. Thus, the carbonation rate of concrete is reduced.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU528
【參考文獻】
相關(guān)期刊論文 前10條
1 岳清瑞;王玲;;長期暴露環(huán)境下銹損鋼筋混凝土試件耐久性修復(fù)試驗研究[J];工業(yè)建筑;2017年01期
2 華小滿;張經(jīng)雙;;膨脹劑和玄武巖纖維對含氯鹽混凝土壓拉性能的影響[J];科學(xué)技術(shù)與工程;2016年18期
3 達波;余紅發(fā);麻海燕;張亞棟;朱海威;余強;葉海民;景顯雙;;南海島礁普通混凝土結(jié)構(gòu)耐久性的調(diào)查研究[J];哈爾濱工程大學(xué)學(xué)報;2016年08期
4 鐘小平;金偉良;張寶健;;氯鹽環(huán)境下混凝土結(jié)構(gòu)的耐久性設(shè)計方法[J];建筑材料學(xué)報;2016年03期
5 李鵬;苗苗;馬曉杰;;膨脹劑對補償收縮混凝土性能影響的研究進展[J];硅酸鹽通報;2016年01期
6 楊綠峰;洪斌;余波;;混凝土結(jié)構(gòu)耐久性控制區(qū)及設(shè)計參數(shù)的定量分析[J];建筑結(jié)構(gòu)學(xué)報;2016年01期
7 金南國;徐亦斌;付傳清;金賢玉;王治;;荷載、碳化和氯鹽侵蝕對混凝土劣化的影響[J];硅酸鹽學(xué)報;2015年10期
8 蔣林華;白舒雅;徐金霞;張研;儲洪強;;鋼筋銹蝕氯離子臨界濃度研究進展[J];水利水電科技進展;2015年05期
9 金偉良;吳航通;許晨;金駿;;鋼筋混凝土結(jié)構(gòu)耐久性提升技術(shù)研究進展[J];水利水電科技進展;2015年05期
10 葉學(xué)華;許金余;聶良學(xué);;不同玄武巖纖維摻量的早強混凝土劈裂拉伸強度研究[J];硅酸鹽通報;2015年06期
,本文編號:1972801
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1972801.html