壓彎剪扭復(fù)合作用鋼筋混凝土T形柱抗震性能研究
本文選題:壓彎剪扭 + 鋼筋混凝土。 參考:《廣西大學(xué)》2017年碩士論文
【摘要】:為研究壓彎剪扭復(fù)合受力鋼筋混凝土 T形柱的抗震性能,以扭彎比、軸壓比、肢高肢厚比變化參數(shù),進行6個T形鋼筋混凝土柱試件在恒定軸力反復(fù)彎剪扭復(fù)合作用下的加載試驗。觀察了試件的破壞過程和形態(tài),獲取了其扭矩-扭轉(zhuǎn)角滯回曲線和荷載-位移滯回曲線,得到了試件的開裂點、峰值點和破壞點等特征參數(shù);谠囼灁(shù)據(jù),詳細分析扭矩對型鋼混凝土柱的極限承載力、位移延性、層間側(cè)移角、耗能能力、強度及剛度退化等抗震性能指標(biāo)的影響。在試驗的基礎(chǔ)上,采用ABAQUS有限元軟件對試驗構(gòu)件進行建模分析,對比了試驗與模擬構(gòu)件的滯回曲線及骨架曲線,經(jīng)驗證有限元模擬滿足一般精度要求。在此基礎(chǔ)上設(shè)計各工況下的試件15個,分別考慮了軸壓比、扭彎比、縱筋直徑、箍筋直徑4個變化參數(shù),分析了各變化參數(shù)對試件滯回曲線、骨架曲線、延性系數(shù)及初始剛度的影響,與試驗結(jié)果基本相符,經(jīng)試驗和有限元模擬計算,主要得出以下結(jié)論:(1)根據(jù)扭彎比的不同,試件破壞形態(tài)分為彎形破壞、彎扭破壞及扭轉(zhuǎn)剪切破壞,破壞時T形截面腹板底部混凝土被壓碎,鋼筋屈曲外露,腹板兩側(cè)混凝土被剪壞,其斜裂縫呈“X”狀。(2)低周反復(fù)壓彎剪扭復(fù)合受力T形柱的滯回曲線呈捏攏狀的S形,滯回曲線不飽滿;扭矩作用下,T形鋼筋混凝土柱的延性減弱,扭矩的存在將加快裂縫的出現(xiàn),但扭矩在一定程度上能增強試件的抗震耗能能力;軸壓力的增加能夠提高試件的初始剛度以及開裂荷載;肢高肢厚比的增大可提高試件的抗扭承載力及延性,但對剛度影響較小。(3)由ABAQUS增設(shè)的模型能夠較為有效地對T形柱壓彎剪扭復(fù)合受力進行模擬,其精度滿足一般要求。通過拓展分析,發(fā)現(xiàn)縱筋直徑的增加能有效提高試件的耗能能力,對試件抗彎承載力及延性提高有限;箍筋縱筋的增加對試件極限抗彎能力有所提升,但效果不明顯。
[Abstract]:In order to study the seismic behavior of reinforced concrete T-shaped columns subjected to combined compression, bending and torsional forces, the variation parameters of torsional / bending ratio, axial compression ratio and limb height / thickness ratio are used to study the seismic behavior of reinforced concrete columns. The loading tests of 6 T-shaped reinforced concrete columns subjected to repeated bending, shear and torsion combined with constant axial force were carried out. The failure process and morphology of the specimen were observed. The torque-torsion angle hysteretic curve and load-displacement hysteretic curve were obtained, and the characteristic parameters such as crack point, peak point and failure point were obtained. Based on the experimental data, the effects of torque on the ultimate bearing capacity, displacement ductility, lateral displacement angle, energy dissipation capacity, strength and stiffness degradation of SRC columns are analyzed in detail. On the basis of the experiment, the ABAQUS finite element software is used to model and analyze the test component, and the hysteretic curve and skeleton curve of the test and simulation members are compared. It is verified that the finite element simulation meets the general precision requirement. On this basis, 15 specimens under different working conditions are designed, and four parameters are considered, including axial compression ratio, torsional bending ratio, diameter of longitudinal reinforcement and diameter of stirrups. The hysteretic curve and skeleton curve of each parameter are analyzed. The effect of ductility coefficient and initial stiffness is basically in agreement with the test results. The following conclusions are drawn by the experiment and finite element simulation calculation: 1) according to the different torsional bending ratio, the failure form of the specimen is divided into bending failure. Bending and torsional failure and torsional shear failure, when the T-section web bottom concrete is crushed, steel bar buckling exposed, concrete on both sides of the web is shearing, The oblique crack is "X" shape. (2) the hysteretic curve of T-shaped column under low cycle repeated compression, bending, shear and torsion is S-shaped, and the hysteretic curve is not full, and the ductility of T-shaped reinforced concrete column is weakened under the action of torque. The existence of torque will speed up the appearance of cracks, but to a certain extent, torque can enhance the seismic energy dissipation capacity of the specimen, and the increase of axial pressure can improve the initial stiffness and cracking load of the specimen. With the increase of the ratio of limb height to limb thickness, the torsional bearing capacity and ductility of the specimens can be improved, but the influence on stiffness is small. 3) the model added by ABAQUS can effectively simulate the compression, bending, shear and torsion forces of T-shaped columns, and its precision can meet the general requirements. Through expansion analysis, it is found that the increase of longitudinal reinforcement diameter can effectively improve the energy dissipation capacity of the specimen, and the flexural capacity and ductility of the specimen are limited, while the increase of stirrups increases the ultimate bending capacity of the specimen, but the effect is not obvious.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU375.3;TU352.11
【參考文獻】
相關(guān)期刊論文 前10條
1 劉凱華;嚴(yán)佳川;鄒超英;;再生混凝土梁剪扭復(fù)合受力性能試驗研究[J];建筑結(jié)構(gòu)學(xué)報;2016年S2期
2 劉群文;邵永健;;型鋼混凝土復(fù)合受扭構(gòu)件的抗扭剛度研究[J];蘇州科技學(xué)院學(xué)報(工程技術(shù)版);2016年02期
3 徐佩登;邵永健;陳杰;;型鋼混凝土復(fù)合受扭構(gòu)件的恢復(fù)力模型研究[J];世界地震工程;2016年02期
4 徐佩登;邵永健;;型鋼混凝土復(fù)合受扭構(gòu)件滯回性能的研究[J];混凝土與水泥制品;2016年05期
5 陳宗平;徐金俊;薛建陽;王妮;;基于變形和能量雙重準(zhǔn)則的型鋼混凝土異形柱地震損傷行為研究[J];土木工程學(xué)報;2015年08期
6 陳宗平;徐金俊;陳宇良;薛建陽;梁瑩;;基于修正Park-Ang模型的型鋼混凝土異形柱框架節(jié)點地震損傷研究[J];建筑結(jié)構(gòu)學(xué)報;2015年08期
7 徐金俊;陳宗平;陳宇良;;L、T、十形截面型鋼混凝土異形柱滯回性能對比分析[J];實驗力學(xué);2015年02期
8 丁雙雙;邵永健;宋學(xué)強;;型鋼混凝土純扭構(gòu)件極限扭矩計算理論研究[J];淮陰工學(xué)院學(xué)報;2015年01期
9 徐玉野;何葉;王全鳳;;壓彎剪扭作用下異形柱的抗扭性能研究[J];工程力學(xué);2014年06期
10 項貽強;程坤;吳強強;;鋼筋混凝土構(gòu)件彎剪扭復(fù)合受力分析研究與進展[J];中國公路學(xué)報;2014年04期
相關(guān)博士學(xué)位論文 前3條
1 程坤;鋼筋混凝土箱梁復(fù)合受力特性的試驗與理論研究[D];浙江大學(xué);2014年
2 王宇航;曲線梁橋鋼管混凝土橋墩的扭轉(zhuǎn)效應(yīng)研究[D];清華大學(xué);2013年
3 曲哲;搖擺墻—框架結(jié)構(gòu)抗震損傷機制控制及設(shè)計方法研究[D];清華大學(xué);2010年
相關(guān)碩士學(xué)位論文 前3條
1 鄭巍;壓彎剪扭復(fù)合受力焊接栓釘型鋼混凝土柱抗震性能研究[D];廣西大學(xué);2015年
2 王歡歡;鋼筋混凝土柱在壓彎剪扭復(fù)合受力作用下的抗震性能試驗研究[D];廣西大學(xué);2015年
3 邱政和;壓力和扭矩共同作用下鋼筋混凝土異形柱的抗扭性能研究[D];華僑大學(xué);2011年
,本文編號:1904706
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1904706.html