巖石聲發(fā)射及分形特征試驗(yàn)研究
本文選題:聲發(fā)射 + 關(guān)聯(lián)維數(shù)。 參考:《成都理工大學(xué)》2017年碩士論文
【摘要】:巖石是一種天然地質(zhì)體,經(jīng)過(guò)億萬(wàn)年的構(gòu)造運(yùn)動(dòng)與風(fēng)化剝蝕,形成如今非連續(xù)的,各向異性的,受環(huán)境條件影響的復(fù)雜體。巖石聲發(fā)射作為巖石損傷位置的外在聲學(xué)現(xiàn)象,損傷破裂信息豐富。分形作為巖石力學(xué)的一個(gè)嶄新分支學(xué)科,是研究復(fù)雜無(wú)序事物規(guī)律的有力工具。研究表明,巖石損傷破壞過(guò)程不論是在空間上還是在時(shí)間上都是分形的。分析與探討巖石損傷破壞過(guò)程中聲發(fā)射基本參數(shù)和分形參數(shù)的特性,有利于進(jìn)一步了解巖石損傷機(jī)理與破裂本質(zhì)。為了解巖石損傷破壞過(guò)程并進(jìn)一步對(duì)巖石的破壞前兆進(jìn)行預(yù)測(cè),本文針對(duì)砂巖、輝長(zhǎng)巖、花崗巖、灰?guī)r等四類(lèi)常見(jiàn)巖石進(jìn)行單軸壓縮全過(guò)程聲發(fā)射試驗(yàn),分析聲發(fā)射基本參數(shù)演化過(guò)程與應(yīng)力或變形階段的統(tǒng)計(jì)關(guān)系并識(shí)別巖石損傷破壞前兆特征;計(jì)算并分析巖石聲發(fā)射時(shí)間序列分形演化規(guī)律,并識(shí)別巖石損傷破壞前兆特征。主要工作內(nèi)容及取得的成果如下:(1)以0.1mm/Min的速率對(duì)巖石試件進(jìn)行單軸壓縮全過(guò)程試驗(yàn),并實(shí)時(shí)監(jiān)測(cè)聲發(fā)射信號(hào)。分析與探討巖石聲發(fā)射事件數(shù)、振鈴計(jì)數(shù)以及能量等三個(gè)參數(shù)的損傷演化過(guò)程,識(shí)別巖石損傷破壞前兆特征。(2)巖石試件聲發(fā)射事件數(shù)、振鈴計(jì)數(shù)、能量在壓密階段、彈性變形階段、加速破壞階段皆依次增加,且事件數(shù)增加最為緩慢,能量激增最為明顯。在壓密階段、彈性變形階段、加速破壞階段,四類(lèi)巖石聲發(fā)射事件數(shù)絕對(duì)量從小到大皆為砂巖、輝長(zhǎng)巖、灰?guī)r、花崗巖;聲發(fā)射事件數(shù)相對(duì)量隨巖石彈性模量的增加,在壓密階段與彈性變形階段皆呈現(xiàn)依次增大的現(xiàn)象,而在加速破壞階段則依次降低。在壓密階段與加速破壞階段,振鈴計(jì)數(shù)和能量規(guī)律性并不太明顯,然而在彈性變形階段,振鈴計(jì)數(shù)平均值、最大值、累計(jì)值與能量平均值、最大值、累計(jì)值的絕對(duì)量皆呈隨巖石彈性模量增加而依次增加的現(xiàn)象;聲發(fā)射振鈴計(jì)數(shù)累計(jì)量比值與能量累計(jì)量比值也都表現(xiàn)為花崗巖最少,灰?guī)r最多的事實(shí)。(3)巖石損傷破壞前兆各聲發(fā)射參數(shù)特征點(diǎn)(s)普遍存在能量累計(jì)s點(diǎn)應(yīng)力比振鈴累計(jì)計(jì)數(shù)s點(diǎn)應(yīng)力比事件數(shù)s點(diǎn)應(yīng)力比的現(xiàn)象,且振鈴累計(jì)計(jì)數(shù)特征點(diǎn)總是非常接近巖石的屈服點(diǎn)。對(duì)比分析巖石聲發(fā)射基本參數(shù)演化曲線(xiàn)圖可知,聲發(fā)射事件數(shù)曲線(xiàn)前兆特征點(diǎn)可能不明顯,能量累計(jì)曲線(xiàn)可能掩蓋微小有效信息而都無(wú)法很好的應(yīng)用,然而振鈴累計(jì)計(jì)數(shù)曲線(xiàn)能最直觀的、有效的反映巖石損傷過(guò)程真實(shí)狀態(tài)。(4)編譯程序(GP-m.m)計(jì)算相空間維數(shù)(m)的取值并分析其影響。當(dāng)m取值偏小時(shí),則相空間重疊;當(dāng)m取值過(guò)大時(shí),則計(jì)算量大大增加,且分形范圍變窄,因此取最適相空間嵌入維數(shù)m=10。編譯程序(GP-D.m)計(jì)算不同應(yīng)變比下巖石損傷破壞全過(guò)程相點(diǎn)距離均值和關(guān)聯(lián)維數(shù),分析其演化規(guī)律并識(shí)別巖石損傷破壞前兆特征。(5)單軸壓縮全過(guò)程巖石損傷破壞聲發(fā)射分形參數(shù)-相點(diǎn)距離均值,在彈性變形階段呈現(xiàn)隨巖石初始損傷程度大而上升,小而平穩(wěn)下降的現(xiàn)象;在加速破壞階段皆激增并在峰值應(yīng)力處達(dá)到最大的現(xiàn)象;在峰后階段,隨應(yīng)力跌落而下降,隨應(yīng)力臺(tái)階而上升,并在殘余應(yīng)力段基本保持穩(wěn)定。單軸壓縮全過(guò)程巖石損傷破壞聲發(fā)射分形參數(shù)-關(guān)聯(lián)維數(shù),呈現(xiàn)“波動(dòng)-上升-下降-激增-波動(dòng)”的演化規(guī)律。(6)聲發(fā)射分形相點(diǎn)距離均值激增點(diǎn)以及關(guān)聯(lián)維數(shù)“V型”拐點(diǎn)可以作為巖石損傷破壞前兆的特征識(shí)別點(diǎn),同時(shí)也可作為間接判定巖石屈服點(diǎn)的依據(jù)。鑒于巖石聲發(fā)射基本參數(shù)的敏感性、直觀性、準(zhǔn)確性以及分形參數(shù)的穩(wěn)定性,筆者建議以聲發(fā)射振鈴計(jì)數(shù)特征點(diǎn)s作為巖石損傷破壞的前兆,以相點(diǎn)距離均值特征點(diǎn)s和關(guān)聯(lián)維數(shù)特征點(diǎn)s作為聲發(fā)射振鈴計(jì)數(shù)特征點(diǎn)識(shí)別準(zhǔn)確性的驗(yàn)證。(7)基于聲發(fā)射振鈴計(jì)數(shù)的損傷本構(gòu)模型可以完整地反映巖石的損傷破壞全過(guò)程;基于weibull分布和對(duì)數(shù)正態(tài)分布的本構(gòu)模型能很好地揭示巖石在峰值應(yīng)力前的損傷破壞過(guò)程。
[Abstract]:Rock is a natural geological body. After hundreds of millions of years of tectonic movement and weathering denudation, it forms a complex body that is discontinuous, anisotropic and affected by environmental conditions. The acoustic emission of rock is an external acoustic phenomenon of rock damage position, and the information of damage and rupture is abundant. As a new branch of rock mechanics, fractal is studied. A powerful tool for the law of complex and disordered things. The study shows that the process of rock damage and failure is fractal in both space and time. The analysis and discussion of the characteristics of the basic acoustic emission parameters and fractal parameters in the process of rock damage and failure is beneficial to further understanding the damage mechanism and fracture nature of rock. The damage process is predicted and the precursors of rock failure are predicted. In this paper, four kinds of common rocks, such as sandstone, gabbro, granite and limestone, are carried out by uniaxial compression full process acoustic emission test, and the statistical relationship between basic parameters of acoustic emission and stress or deformation stage is analyzed and the precursory characteristics of rock damage and damage are identified. The fractal evolution law of rock acoustic emission time series is analyzed and the precursory characteristics of rock damage and damage are identified. The main work contents and achievements are as follows: (1) a single axial compression test of rock specimens is carried out at the rate of 0.1mm/Min, and the acoustic emission signals are monitored in real time. The number of acoustic emission events, ringing count and the counting of rock are analyzed and discussed. The damage evolution process of three parameters, such as energy, identifies the precursory characteristics of rock damage and damage. (2) the number of acoustic emission events, the counting of ringing, the energy in the stage of compaction, the stage of elastic deformation and the accelerated failure stage, and the number of events increases most slowly and the energy increase is most obvious. In the compaction stage, the elastic deformation phase, acceleration. In the stage of failure, the absolute amount of four types of acoustic emission events from small to large are sandstone, gabbro, limestone and granite, and the relative amount of acoustic emission events increases with the increase of the elastic modulus of rock, in the compaction stage and the stage of elastic deformation, but in the stage of accelerated failure, and in the compaction stage and accelerated failure. At the stage, the ringing count and energy regularity are not very obvious. However, in the elastic deformation stage, the mean value, the maximum value, the accumulative value and the energy mean value, the maximum value and the cumulative value all increase in turn with the increase of the elastic modulus of the rock; the ratio of the accumulative amount of the sound emission ringing count to the accumulative energy is also all table. It is the fact that the granite is the least and the limestone has the most. (3) the stress ratio of the accumulative s point stress to the accumulative count s point stress ratio is s point stress ratio, and the cumulative count characteristic point of the ringing is always close to the yield point of the rock, and the rock acoustic emitter base is compared and analyzed. This parameter evolution curve map shows that the premonitory feature points of the acoustic emission event number curve may not be obvious. The accumulative energy curve can not be applied well, but the accumulative counting curve of the ringing can be the most intuitive and effective to reflect the real state of the rock damage process. (4) the compiler program (GP-m.m) calculates the dimension of phase space ( When the value of M is too small, the phase space overlaps. When the value of M is too large, the calculation amount is greatly increased and the fractal range is narrowed. Therefore, the optimum phase space embedding dimension m=10. compiler (GP-D.m) is taken to calculate the mean and correlation dimension of the phase point distance of the whole process of rock damage and damage under different strain ratios and analyze its evolution. The precursory characteristics of rock damage and damage are recognized and identified. (5) the fractal parameters of acoustic emission, the mean value of the phase point distance, in the whole process of uniaxial compression, are increased with the initial damage degree of the rock, and the phenomenon of small and steady descent is shown in the stage of elastic deformation, and the maximum phenomenon is reached at the stage of accelerated failure and the maximum stress at the peak stress. In the post peak period, it falls with the stress drop and rises with the stress step, and is basically stable in the residual stress section. The fractal parameters of acoustic emission are damaged and damaged in the whole process of uniaxial compression. The evolution law of "fluctuation - ascending - descent - Surge - fluctuation" is presented. (6) the mean sharp increase point and correlation of the fractal phase point distance of acoustic emission The dimension "V" inflection point can be used as the feature recognition point for the precursor of rock damage and damage, and can also be used as the basis for indirect determination of rock yield points. In view of the sensitivity, intuition, accuracy and stability of the fractal parameters of the basic parameters of rock acoustic emission, the author suggests that the acoustic emission ringing count feature point s is used as the damage damage of rock. The precursors of the phase point distance mean s and the correlation dimension feature point s are used to verify the recognition accuracy of the acoustic emission ringing count feature points. (7) the damage constitutive model based on the sound emission ringing count can fully reflect the whole process of rock damage and damage, and the constitutive model based on the Weibull distribution and the lognormal distribution can be very good. The damage process of rock before peak stress is revealed.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TU45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈忠;付小敏;黃興建;張昕;賓婷婷;;軟巖聲發(fā)射序列分形特征研究[J];中國(guó)測(cè)試;2016年06期
2 沈忠;付小敏;賓婷婷;黃興建;;不同地質(zhì)時(shí)期砂巖的聲發(fā)射特性試驗(yàn)研究[J];中國(guó)測(cè)試;2016年04期
3 Agioutantis Z.;Kaklis K.;Mavrigiannakis S.;Verigakis M.;Vallianatos F.;Saltas V.;;Potential of acoustic emissions from three point bending tests as rock failure precursors[J];International Journal of Mining Science and Technology;2016年01期
4 郭清露;榮冠;姚孟迪;程龍;楊潔;彭俊;;大理巖熱損傷聲發(fā)射力學(xué)特性試驗(yàn)研究[J];巖石力學(xué)與工程學(xué)報(bào);2015年12期
5 張黎明;任明遠(yuǎn);馬紹瓊;王在泉;王金良;;大理巖卸圍壓破壞全過(guò)程的聲發(fā)射及分形特征[J];巖石力學(xué)與工程學(xué)報(bào);2015年S1期
6 吳賢振;劉建偉;劉祥鑫;趙奎;張艷博;;巖石聲發(fā)射振鈴累計(jì)計(jì)數(shù)與損傷本構(gòu)模型的耦合關(guān)系探究[J];采礦與安全工程學(xué)報(bào);2015年01期
7 陳子全;李天斌;陳國(guó)慶;張航;;水力耦合作用下的砂巖聲發(fā)射特性試驗(yàn)研究[J];巖土力學(xué);2014年10期
8 楊永杰;王德超;郭明福;李博;;基于三軸壓縮聲發(fā)射試驗(yàn)的巖石損傷特征研究[J];巖石力學(xué)與工程學(xué)報(bào);2014年01期
9 張志鎮(zhèn);高峰;尚曉吉;;Rock burst proneness prediction by acoustic emission test during rock deformation[J];Journal of Central South University;2014年01期
10 秦虎;黃滾;蔣長(zhǎng)寶;李文璞;;不同瓦斯壓力下煤巖聲發(fā)射特征試驗(yàn)研究[J];巖石力學(xué)與工程學(xué)報(bào);2013年S2期
相關(guān)博士學(xué)位論文 前3條
1 孟慶芳;非線(xiàn)性動(dòng)力系統(tǒng)時(shí)間序列分析方法及其應(yīng)用研究[D];山東大學(xué);2008年
2 黃滾;巖石斷裂失穩(wěn)破壞與沖擊地壓的分叉和混沌特征研究[D];重慶大學(xué);2007年
3 王鼐;非線(xiàn)性動(dòng)力學(xué)方法在時(shí)間序列分析中的應(yīng)用[D];復(fù)旦大學(xué);2005年
相關(guān)碩士學(xué)位論文 前5條
1 任明遠(yuǎn);加卸荷應(yīng)力路徑下大理巖變形破壞過(guò)程聲發(fā)射特征與本構(gòu)模型研究[D];青島理工大學(xué);2014年
2 李博;單軸加載砂巖聲發(fā)射特性研究[D];蘭州大學(xué);2014年
3 何浩宇;巖石力學(xué)特性與其聲發(fā)射分形維關(guān)系研究[D];武漢理工大學(xué);2011年
4 姜曦;巖石聲發(fā)射時(shí)間序列分析[D];東北大學(xué) ;2009年
5 劉慶義;基于混沌理論的巖石聲發(fā)射性能研究[D];重慶大學(xué);2008年
,本文編號(hào):1829754
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1829754.html