加筋土擋墻臨界高度研究
本文選題:加筋土擋墻 + 臨界高度; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:隨著加筋體結(jié)構(gòu)應(yīng)用的逐步推廣,人們對(duì)于加筋土擋墻的高度需求越來越大,因此加筋土擋墻的臨界高度研究漸漸成為人們關(guān)注的一個(gè)重點(diǎn)問題,其研究方法主要包括:(1)傳統(tǒng)塑性理論;(2)廣義塑性理論;(3)極限分析法三種方法。目前基于這些方法進(jìn)行的加筋土擋墻臨界高度研究不少,但大多忽略了筋材與土體之間的摩擦損耗這一客觀因素,致使研究結(jié)果難以與實(shí)際相吻合。本文以極限分析法為基礎(chǔ),通過分析加筋體作用機(jī)理,充分考慮了加筋土擋墻發(fā)生內(nèi)部破壞時(shí)速度間斷面上筋材和土體的能量損耗以及兩者之間的摩擦損耗,推導(dǎo)出加筋土擋墻臨界高度公式,并用多種方法進(jìn)行驗(yàn)證。所做的主要工作及結(jié)論如下:(1)分析土體加筋機(jī)理及幾種破壞模式,確定加筋體發(fā)生內(nèi)部破壞時(shí)破裂面形態(tài)為對(duì)數(shù)螺旋面;(2)以武漢大學(xué)王釗教授研究思路為基礎(chǔ),基于極限分析法,認(rèn)為加筋土擋墻發(fā)生內(nèi)部破壞時(shí),系統(tǒng)總的內(nèi)部能量損耗率包括速度間斷面上筋材和土體的能量損耗率以及兩者之間由摩擦引起的能量損耗率。外功率由轉(zhuǎn)動(dòng)土體的重力提供。建立分析方程并推導(dǎo)出加筋土擋墻臨界高度計(jì)算公式;(3)借鑒國(guó)外學(xué)者Porbaha A所做的模型試驗(yàn)參數(shù),運(yùn)用半圖法對(duì)加筋土坡臨界高度進(jìn)行求解,并與試驗(yàn)結(jié)果對(duì)比,兩者基本吻合,驗(yàn)證了考慮筋~土間摩擦損耗的加筋土擋墻臨界高度公式的合理性;(4)參照模型試驗(yàn)參數(shù),在Geo-Studio軟件中的SLOPE模塊建立分析模型,對(duì)加筋土擋墻進(jìn)行逐層填筑,得出在臨界狀態(tài)(Fs=1)時(shí)加筋土擋墻的高度,與理論計(jì)算和模型試驗(yàn)結(jié)果基本吻合,進(jìn)一步驗(yàn)證公式的合理性;(5)將加筋土擋墻臨界高度公式應(yīng)用于工程實(shí)際,結(jié)合研究區(qū)邊坡設(shè)計(jì)相關(guān)參數(shù),利用半圖法對(duì)公式進(jìn)行求解,計(jì)算得到相應(yīng)設(shè)計(jì)條件下,將黃土作為填料時(shí)加筋土擋墻的最大高度為72.6 m,并選取小于該高度的典型剖面進(jìn)行穩(wěn)定性分析,結(jié)果滿足規(guī)范要求,證明公式具一定的指導(dǎo)意義。
[Abstract]:With the gradual application of reinforced structure, the demand for the height of reinforced earth retaining wall is increasing. Therefore, the study of critical height of reinforced earth retaining wall has gradually become a key issue that people pay attention to. The research methods mainly include three kinds of methods: (1) traditional plastic theory and (2) Generalized plasticity theory (/ 3)) limit analysis method. At present, there are many researches on critical height of reinforced earth retaining wall based on these methods, but most of them ignore the objective factor of friction loss between reinforced material and soil, which makes the research results difficult to coincide with the actual situation. Based on the limit analysis method and by analyzing the mechanism of reinforced body, the energy loss of reinforcement and soil on the velocity discontinuous surface and the friction loss between them are fully considered in this paper when the internal failure of reinforced earth retaining wall occurs. The formula of critical height of reinforced earth retaining wall is derived and verified by many methods. The main work and conclusions are as follows: (1) analyzing the mechanism of soil reinforcement and several failure modes, determining that the shape of fracture surface is logarithmic spiral plane in the case of internal failure of reinforced body) based on the research ideas of Professor Wang Zhao of Wuhan University. Based on the limit analysis method, it is considered that the total internal energy loss rate of the system includes the energy loss rate of the steel bar and soil on the velocity discontinuous surface and the energy loss rate caused by friction between the reinforced earth retaining wall and the reinforced earth retaining wall. The external power is provided by the gravity of the rotating soil. The analysis equation is established and the formula for calculating critical height of reinforced earth retaining wall is deduced. The model test parameters made by foreign scholar Porbaha A are used for reference, and the critical height of reinforced soil slope is solved by using half graph method. The results are in good agreement with the experimental results. The rationality of the formula of critical height of reinforced earth retaining wall considering the friction loss between reinforcement and soil is verified. According to the parameters of the model test, the analysis model is established in the SLOPE module of Geo-Studio software, and the reinforced earth retaining wall is filled layer by layer. It is concluded that the height of reinforced earth retaining wall in critical state is in good agreement with the theoretical calculation and model test results, and the rationality of the formula is further verified. (5) the formula of critical height of reinforced earth retaining wall is applied to engineering practice. According to the parameters of slope design in the study area, the formula is solved by using the semi-graph method, and the corresponding design conditions are obtained. When loess is used as filler, the maximum height of reinforced earth retaining wall is 72.6 m, and the typical section less than this height is selected for stability analysis. The results meet the requirements of the code and prove that the formula has certain guiding significance.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU476.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 建鑫龍;梁倩;張殿義;;基于MARC的土工格柵加筋擋土墻的有限元分析[J];路基工程;2015年04期
2 任德會(huì);;土工格柵加筋擋土墻主要結(jié)構(gòu)型式及其破壞型式研究[J];工程建設(shè)與設(shè)計(jì);2015年07期
3 欒茂田;肖成志;楊慶;李敬峰;上官云龍;裴建軍;;考慮蠕變性土工格柵加筋擋土墻應(yīng)力與變形有限元分析[J];巖土力學(xué);2006年06期
4 喬麗平;王釗;;加筋土坡臨界高度的研究[J];巖土力學(xué);2006年01期
5 王釗,喬麗平;基于極限分析上限法的加筋土坡臨界高度[J];武漢大學(xué)學(xué)報(bào)(工學(xué)版);2005年05期
6 欒茂田,李敬峰,肖成志,楊慶,裴建軍;土工格柵加筋擋土墻工作性能的非線性有限元數(shù)值分析[J];巖石力學(xué)與工程學(xué)報(bào);2005年14期
7 劉春虹,肖朝昀,王建華,陳錦劍;土工織物加固軟土路堤的有限元分析[J];巖土力學(xué);2004年S2期
8 肖成志,欒茂田,楊慶;考慮格柵流變性的加筋擋土墻格柵等效應(yīng)力計(jì)算[J];巖土工程技術(shù);2004年01期
9 朱湘,黃曉明;有限元方法分析影響加筋路堤效果的幾個(gè)因素[J];土木工程學(xué)報(bào);2002年06期
10 李國(guó)祥;加筋土擋墻破裂面的試驗(yàn)研究與分析[J];鐵道工程學(xué)報(bào);2001年03期
相關(guān)碩士學(xué)位論文 前5條
1 路亮;礫質(zhì)土加筋高擋墻穩(wěn)定性數(shù)值模擬研究[D];西北農(nóng)林科技大學(xué);2013年
2 沈慧萍;加筋土的界面特性與加筋軟基計(jì)算[D];河海大學(xué);2005年
3 王佳運(yùn);基于ANSYS加筋土擋墻有限元分析[D];長(zhǎng)安大學(xué);2005年
4 季大雪;土工格柵加筋路堤邊坡結(jié)構(gòu)性能研究[D];大連理工大學(xué);2004年
5 胡發(fā)亭;土工格柵長(zhǎng)期蠕變行為研究及有限元分析[D];北京化工大學(xué);2002年
,本文編號(hào):1824907
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1824907.html