基于POD和SPT分解的大型鋼儲(chǔ)罐風(fēng)壓分布機(jī)制分析
本文選題:鋼儲(chǔ)罐 + 風(fēng)荷載�。� 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:鋼儲(chǔ)罐是存貯石油的主要設(shè)施,隨著土地資源的日益缺乏,鋼儲(chǔ)罐的容積越來越大,大型鋼儲(chǔ)罐的建設(shè)也越來越普遍。另一方面,大型鋼儲(chǔ)罐是典型的風(fēng)敏感結(jié)構(gòu),容易發(fā)生風(fēng)致屈曲破壞,近年來該類破壞屢見不鮮。大型鋼儲(chǔ)罐抗風(fēng)性能是重大工程實(shí)踐中需要解決的關(guān)鍵科學(xué)問題之一。本文在已有研究的基礎(chǔ)上,利用POD(Proper Orthogonal Decomposition)和SPT(Spectral Proper Transformation)分解方法,對(duì)大型鋼儲(chǔ)罐的風(fēng)壓作用機(jī)制進(jìn)行了分析。完成的主要工作包括以下幾個(gè)方面:1)為了更好的分析雷諾數(shù)效應(yīng),通過重新定義的折算湍流度來表示風(fēng)場湍流特征,從新的角度分析了4種湍流風(fēng)場下,高徑比分別為0.875、0.323的大型鋼儲(chǔ)罐風(fēng)壓隨雷諾數(shù)的變化規(guī)律,在此基礎(chǔ)上,對(duì)比了高徑比分別為0.556、0.323的敞口與平頂大型鋼儲(chǔ)罐風(fēng)荷載。2)從隨機(jī)場分解的角度,介紹了POD、SPT分解的基本原理及其在風(fēng)工程中的應(yīng)用,并以方形截面超高層建筑為例,利用POD和SPT方法對(duì)0.6H(H為建筑高度)高度處建筑表面風(fēng)壓場進(jìn)行分解,結(jié)果表明,利用POD與SPT分解相結(jié)合的方法,能夠有效識(shí)別風(fēng)壓作用機(jī)制。3)利用POD和SPT分解技術(shù),對(duì)高徑比分別為0.556、0.323的平頂大型鋼儲(chǔ)罐表面風(fēng)壓場進(jìn)行分解,對(duì)其風(fēng)壓作用機(jī)制進(jìn)行識(shí)別,并與二維圓柱的特征模態(tài)進(jìn)行對(duì)比。結(jié)果表明,二維圓柱的風(fēng)荷載以橫風(fēng)向渦激激勵(lì)為主導(dǎo),隨著高徑比的減小,順風(fēng)向湍流激勵(lì)的影響越來越大,并成為主導(dǎo)機(jī)制。4)利用POD和SPT分解技術(shù),對(duì)高徑比分別為0.556、0.323的敞口大型鋼儲(chǔ)罐表面風(fēng)壓場進(jìn)行分解,對(duì)其風(fēng)壓作用機(jī)制進(jìn)行識(shí)別,與平頂儲(chǔ)罐的分解結(jié)果進(jìn)行對(duì)比分析。結(jié)果表明,在高徑比相同的情況下,敞口儲(chǔ)罐順風(fēng)向湍流激勵(lì)的影響逐漸減小。
[Abstract]:Steel storage tanks are the main facilities for oil storage. With the increasingly lack of land resources, the volume of steel storage tanks is becoming larger and larger, and the construction of large steel storage tanks is becoming more and more common. On the other hand large steel storage tanks are typical wind-sensitive structures which are prone to wind-induced buckling failure and are not uncommon in recent years. Wind resistance of large steel storage tanks is one of the key scientific problems to be solved in important engineering practice. Based on the previous research, the mechanism of wind pressure in large steel storage tanks is analyzed by using POD(Proper Orthogonal decomposition and SPT(Spectral Proper transformation methods. The main work accomplished includes the following aspects: 1) in order to better analyze the Reynolds number effect, the turbulent characteristics of the wind field are expressed by redefining the converted turbulence degree, and the four turbulent wind fields are analyzed from a new perspective. Based on the variation of wind pressure with Reynolds number in large steel storage tanks with height to diameter ratio of 0.875 and 0.323, the wind load of large steel storage tanks with height to diameter ratio of 0.556 to 0.323 is compared with wind load of flat-top large steel storage tanks from the angle of random field decomposition. This paper introduces the basic principle of PODS-SPT decomposition and its application in wind engineering. Taking the super-tall building with square section as an example, the wind pressure field on the building surface at the height of 0.6H(H is decomposed by using POD and SPT methods. The results show that, By combining POD with SPT decomposition, the wind pressure mechanism can be effectively identified. 3) using POD and SPT decomposition techniques, the wind pressure field on the surface of large steel storage tank with height to diameter ratio of 0.556 ~ 0.323 is decomposed, and the mechanism of wind pressure action is identified. And compared with the characteristic mode of two-dimensional cylinder. The results show that the wind load of a two-dimensional cylinder is dominated by cross-wind vortex-induced excitation. With the decrease of the ratio of height to diameter, the downstream wind turbulence excitation becomes more and more important, and becomes the dominant mechanism. 4) POD and SPT decomposition techniques are used. The wind pressure field on the surface of large steel storage tank with height to diameter ratio of 0.556 ~ 0.323 is decomposed, and the mechanism of wind pressure action is identified, and the results are compared with those of flat-top storage tank. The results show that under the same ratio of height to diameter, the effect of downwind turbulence on the open storage tank decreases gradually.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU312.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 李杰訓(xùn);韋振光;呂偉;;20萬m~3超大型浮頂油罐設(shè)計(jì)關(guān)鍵技術(shù)[J];石油規(guī)劃設(shè)計(jì);2013年06期
2 傅偉慶;武銅柱;許莉;;大型浮頂油罐技術(shù)發(fā)展[J];化工設(shè)備與管道;2013年04期
3 米廣生;陳德志;瞿帆;;國產(chǎn)高強(qiáng)鋼板(B610E)在15萬m~3油罐中的焊接[J];石油化工建設(shè);2007年05期
4 李宏斌;;我國超大型浮頂油罐的發(fā)展[J];壓力容器;2006年05期
5 武銅柱;大型立式油罐發(fā)展綜述[J];石油化工設(shè)備技術(shù);2004年03期
6 李國琛;浮頂油罐的強(qiáng)度和穩(wěn)定性的計(jì)算公式[J];力學(xué)與實(shí)踐;1982年02期
7 金維昂;;立式圓筒形鋼油罐的風(fēng)力穩(wěn)定[J];煉油設(shè)備設(shè)計(jì);1980年02期
相關(guān)博士學(xué)位論文 前2條
1 邱冶;大跨度柱面屋蓋氣動(dòng)特性雷諾數(shù)效應(yīng)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 林寅;大型鋼儲(chǔ)罐結(jié)構(gòu)的風(fēng)荷載和風(fēng)致屈曲[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前1條
1 郭煥良;大型鋼儲(chǔ)罐的風(fēng)荷載特性研究[D];北京交通大學(xué);2015年
,本文編號(hào):1815593
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1815593.html