索桿張力結(jié)構(gòu)剛度的動(dòng)力監(jiān)測(cè)理論研究
本文選題:索桿張力結(jié)構(gòu) 切入點(diǎn):動(dòng)力測(cè)試法 出處:《浙江大學(xué)》2017年博士論文
【摘要】:最早建成的大跨度索桿張力結(jié)構(gòu)服役時(shí)間已經(jīng)超過(guò)30年,但目前此類結(jié)構(gòu)在健康監(jiān)測(cè)與性能評(píng)價(jià)方面的研究還不多,深入性的工作更是少見(jiàn)。索桿張力結(jié)構(gòu)的剛度構(gòu)成機(jī)理與常規(guī)結(jié)構(gòu)存在重要區(qū)別,需要依靠預(yù)應(yīng)力來(lái)提供結(jié)構(gòu)剛度并維持穩(wěn)定性。經(jīng)驗(yàn)表明,索桿張力結(jié)構(gòu)的設(shè)計(jì)一般由剛度驗(yàn)算控制,相比之下結(jié)構(gòu)強(qiáng)度性能往往容易滿足。由于擔(dān)心結(jié)構(gòu)剛度出現(xiàn)較大偏差,因此預(yù)應(yīng)力也成為在役期索桿張力結(jié)構(gòu)性能監(jiān)測(cè)的重點(diǎn)。目前索桿張力結(jié)構(gòu)實(shí)際工程中,預(yù)應(yīng)力基本是通過(guò)直接測(cè)試索力來(lái)實(shí)施監(jiān)測(cè),但有限的索力測(cè)試數(shù)據(jù)通常較難對(duì)結(jié)構(gòu)的整體預(yù)應(yīng)力和剛度變化情況進(jìn)行有效評(píng)價(jià)。本論文提出采用傳統(tǒng)動(dòng)力測(cè)試法來(lái)直接監(jiān)測(cè)索桿張力結(jié)構(gòu)剛度的新思路?紤]到索桿張力結(jié)構(gòu)存在頻率分布密集、模態(tài)參數(shù)對(duì)預(yù)應(yīng)力偏差敏感等特點(diǎn),對(duì)采用動(dòng)力測(cè)試法進(jìn)行此類結(jié)構(gòu)剛度監(jiān)測(cè)時(shí)存在的重要理論問(wèn)題開(kāi)展研究,具體包括以下五方面內(nèi)容:(1)對(duì)于特定的荷載,各種剛度成分是否能夠?qū)υ摵奢d所產(chǎn)生的變形起到主要抵抗作用應(yīng)該能夠被定量分析。這不僅有助于分析結(jié)構(gòu)的傳力路徑,而且是有效實(shí)施剛度監(jiān)測(cè)的依據(jù)。本文提出了一種能量形式的索桿張力結(jié)構(gòu)剛度成分貢獻(xiàn)度評(píng)價(jià)指標(biāo)。該指標(biāo)可以在結(jié)構(gòu)和構(gòu)件層面描述彈性剛度和幾何剛度對(duì)結(jié)構(gòu)整體剛度的貢獻(xiàn)大小。更重要的是,以剛度矩陣各特征方向?yàn)閷?duì)象,利用該指標(biāo)還可以評(píng)價(jià)各特征方向剛度對(duì)特定荷載所產(chǎn)生變形的抵抗能力,且最終可從結(jié)構(gòu)整體剛度中分離出“關(guān)鍵剛度”并作為結(jié)構(gòu)剛度監(jiān)測(cè)的重點(diǎn)。(2)傳統(tǒng)方法一般基于理想結(jié)構(gòu)(無(wú)預(yù)應(yīng)力偏差)的模態(tài)信息來(lái)開(kāi)展動(dòng)力測(cè)試,但這僅適用于實(shí)際結(jié)構(gòu)與理想結(jié)構(gòu)模態(tài)差異較小的情況。索桿張力結(jié)構(gòu)的頻率分布密集且模態(tài)參數(shù)對(duì)預(yù)應(yīng)力偏差敏感,因此有必要考慮實(shí)際結(jié)構(gòu)模態(tài)參數(shù)(頻率和振型)受隨機(jī)預(yù)應(yīng)力偏差的影響。本文建立了構(gòu)件長(zhǎng)度誤差與模態(tài)特征值、振型之間的靈敏度關(guān)系?紤]隨機(jī)預(yù)應(yīng)力偏差的影響,提出了索桿張力結(jié)構(gòu)模態(tài)參數(shù)變化幅值的估計(jì)方法以及是否會(huì)發(fā)生模態(tài)躍遷的判斷準(zhǔn)則。借助算例,還分析了隨機(jī)預(yù)應(yīng)力偏差對(duì)索桿張力結(jié)構(gòu)模態(tài)特性的一般性影響規(guī)律。(3)基于模態(tài)空間的貢獻(xiàn)度分析,本文提出了一種對(duì)索桿張力結(jié)構(gòu)關(guān)鍵剛度實(shí)施動(dòng)力監(jiān)測(cè)的目標(biāo)模態(tài)確定方法。由于索桿張力結(jié)構(gòu)的模態(tài)參數(shù)對(duì)預(yù)應(yīng)力偏差敏感,因此僅基于理想結(jié)構(gòu)模型確定的目標(biāo)模態(tài)往往不足以充分反映實(shí)際結(jié)構(gòu)的關(guān)鍵剛度。針對(duì)此問(wèn)題,本文進(jìn)一步針對(duì)隨機(jī)預(yù)應(yīng)力偏差造成結(jié)構(gòu)振型變化和模態(tài)躍遷這兩種情況,提出了適用于實(shí)際結(jié)構(gòu)關(guān)鍵剛度監(jiān)測(cè)的目標(biāo)模態(tài)擴(kuò)展策略。算例分析表明,根據(jù)該擴(kuò)展策略確定的目標(biāo)模態(tài)可完全包絡(luò)隨機(jī)預(yù)應(yīng)力偏差對(duì)索桿張力結(jié)構(gòu)模態(tài)特征的影響,能充分反映實(shí)際結(jié)構(gòu)的關(guān)鍵剛度。(4)正是由于模態(tài)參數(shù)對(duì)預(yù)應(yīng)力偏差的敏感性,僅考慮理想結(jié)構(gòu)模型信息的傳統(tǒng)非完備振型擴(kuò)展方法在應(yīng)用于索桿張力結(jié)構(gòu)時(shí)容易失效。本文提出一種考慮隨機(jī)預(yù)應(yīng)力偏差影響的索桿張力結(jié)構(gòu)振型擴(kuò)展的新方法。該方法的基本思路是將實(shí)際結(jié)構(gòu)的振型近似表示為少數(shù)提供主要貢獻(xiàn)的理想結(jié)構(gòu)振型的線性組合,只要能合理確定這些貢獻(xiàn)模態(tài)并對(duì)它們的組合系數(shù)進(jìn)行最佳估計(jì),則可完成目標(biāo)模態(tài)的振型擴(kuò)展。文中考慮振型變化和模態(tài)躍遷的影響提出了貢獻(xiàn)模態(tài)的確定方法。此外,還進(jìn)一步提出了一種改進(jìn)的有效獨(dú)立法(CMEI法)來(lái)獲得貢獻(xiàn)模態(tài)組合系數(shù)的最佳估計(jì),同時(shí)也解決了傳感器的最優(yōu)布置問(wèn)題。算例分析表明,本文所提方法能夠有效進(jìn)行存在隨機(jī)預(yù)應(yīng)力偏差影響的索桿張力結(jié)構(gòu)的振型擴(kuò)展。即使對(duì)于變化劇烈的模態(tài)和存在高噪聲污染的情況,該方法也能保持很高的計(jì)算精度。(5)不考慮激勵(lì)優(yōu)化的常規(guī)模態(tài)測(cè)試方法對(duì)密集模態(tài)的識(shí)別精度較低。為提高識(shí)別精度,配合模態(tài)識(shí)別的時(shí)域法本文提出一種基于優(yōu)化階躍激勵(lì)的密集模態(tài)測(cè)試方法。該方法通過(guò)調(diào)節(jié)階躍激勵(lì)的布置和大小,來(lái)增強(qiáng)結(jié)構(gòu)自由振動(dòng)中待識(shí)別模態(tài)的貢獻(xiàn)且同時(shí)抑制鄰近模態(tài)的貢獻(xiàn),并采用遺傳算法來(lái)尋求最優(yōu)激勵(lì)模式。算例分析表明,所提方法能將密集模態(tài)識(shí)別問(wèn)題轉(zhuǎn)化成為孤立模態(tài)識(shí)別問(wèn)題,可有效提高索桿張力結(jié)構(gòu)密集模態(tài)的識(shí)別精度。
[Abstract]:The earliest built large span cable strut tensile structure service time has been more than 30 years, but at present the research in structure health monitoring and performance evaluation is not enough, the depth of the work is more rare. Cable strut structure stiffness and the formation mechanism of the conventional structure there are important differences, need to rely on to provide the prestressed structure the stiffness and stability. Experience shows that the design of cable strut structure is generally controlled by stiffness checking, compared with structural strength performance is often easily satisfied. Due to concerns about the structural stiffness big deviation, therefore has become the focus of prestressed cable strut structure performance monitoring in service period. The cable strut structure in practical engineering the basic is through direct test, prestressed cable to monitor, but the limited test data of cable force is often difficult to whole prestressed structure and stiffness changes of effective evaluation Price. This thesis puts forward new ideas to direct monitoring of cable strut structure stiffness test method using the traditional power. Taking into account the existence of dense frequency distribution of cable strut structure, modal parameters are sensitive to the deviation characteristics of important theoretical problems of prestressed, existing stiffness monitoring of this kind of structure on the dynamic testing method to carry out specific research including the following five aspects: (1) for a given load, the deformation is various stiffness of the components can play a major role in the load resistance should be quantitatively analyzed. The force transmission path which not only helps to analyze the structure, but also is the effective implementation of stiffness monitoring basis. This paper proposes a a form of energy the stiffness of cable strut structure component contribution evaluation index. The index can describe the elastic stiffness and geometric stiffness small contribution to the overall stiffness of the structure in the structure and component level More importantly, the stiffness matrix of the characteristic direction as the object, using the index can also evaluate the characteristics of directional stiffness deformation resistance to specific load, and ultimately from the overall stiffness of the structure to separate "stiffness" and as a key structural stiffness monitoring. (2 the traditional method is based on the ideal structure) (unprestressed deviation) modal information to carry out dynamic test, but this only applies to the actual structure and mode of the ideal structure of smaller differences. The structure of cable frequency distribution is dense and modal parameters of prestressed partial differential sensitivity, so it is necessary to consider the actual modal parameters (frequency and vibration type) affected by random deviation. This paper established the prestressed member length error and modal eigenvalue sensitivity relationship between modes. Considering the influence of random deviation of prestressed cable strut tension, the structure of die Estimation method of amplitude of state parameters and the criterion of whether there will be a modal transition. With a numerical example, also analyzed the general impact of cable strut tensile structure modal characteristics of the prestressed random deviation. (3) analysis of modal space based on the contributions of this paper puts forward a method of cable strut structure key the implementation of stiffness and dynamic monitoring mode. The modal parameters of cable strut structure sensitive to prestress deviation, so only the target mode to determine the ideal structure model is often not sufficient to fully reflect the actual key based on the stiffness of the structure. Aiming at this problem, this paper further studies the random deviation caused by the two kinds of prestressed structure and vibration mode change mode transition, put forward the target mode applicable to the actual structure of key stiffness monitoring expansion strategy. The example analysis shows that according to the objective model determine the expansion strategy States can be completely random deviation envelope of cable strut tension prestressed modal structure, can fully reflect the actual key structural stiffness. (4) it is because of the sensitivity of modal parameters of the prestressed deviation, only considering the ideal structure model of incomplete information of the traditional modal expansion method applied in cable strut structure easily failure. This paper presents a new method considering influence of random deviation of prestressed cable strut structure modal expansion. The basic idea of this method is the mode of the actual structure of the approximate linear combination of the ideal structure mode provides the main contribution to the minority, as long as can reasonably determine the contribution of these modal and their combination coefficient the best estimate mode can complete the target modal expansion. The method to determine the contribution of the modal vibration mode change and influence of mode transitions are considered. In addition, further Step forward an improved effective independent method (CMEI method) to obtain the best estimate with modal combination coefficient, but also solve the problem of optimal placement of the sensor. The example analysis shows that the proposed method can effectively for cable strut structure modal expansion effect of prestressed random deviation. Even for high the problem of noise intensity and the mode, the method can maintain high accuracy. (5) do not consider the conventional modal test method of optimal incentive intensive mode of low identification accuracy. In order to improve the recognition accuracy, with the time domain method of modal identification is proposed based on optimization step excitation intensive modal testing method. The method by adjusting the step excitation arrangement and size, to enhance the contribution to the identification of modal structures of free vibration and suppression of adjacent modal contribution, and the use of. The algorithm is used to find the optimal excitation mode. The example analysis shows that the proposed method can transform the dense modal identification problem into the isolated modal identification problem, which can effectively improve the identification accuracy of the cable rod tension structure with dense mode.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU399
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王洪濤;施衛(wèi)星;何斌;;某鋼結(jié)構(gòu)夾層考慮振動(dòng)舒適度的設(shè)計(jì)及動(dòng)力測(cè)試評(píng)估[J];工業(yè)建筑;2016年08期
2 王先麗;;鋼絞線斜拉索索力監(jiān)測(cè)與應(yīng)用[J];公路工程;2016年04期
3 夏巨偉;鄧華;;索桿張力結(jié)構(gòu)最不利預(yù)張力偏差的近似解析方法[J];工程力學(xué);2015年06期
4 孫曉;王啟明;朱明;吳明長(zhǎng);;光纖Bragg光柵應(yīng)變計(jì)在500m口徑球面射電望遠(yuǎn)鏡工程索力監(jiān)測(cè)中的應(yīng)用[J];光學(xué)精密工程;2015年04期
5 張麗梅;燕靜靜;杜守軍;范夢(mèng);;基于歐氏距離的網(wǎng)架單點(diǎn)最優(yōu)激勵(lì)位置研究[J];河北農(nóng)業(yè)大學(xué)學(xué)報(bào);2014年05期
6 夏巨偉;張宇鑫;鄧華;董石麟;吳思存;;樂(lè)清體育場(chǎng)月牙形索桁張力罩棚結(jié)構(gòu)的索力監(jiān)測(cè)[J];空間結(jié)構(gòu);2014年02期
7 范學(xué)明;劉春艷;李康業(yè);;深圳寶安體育場(chǎng)索桁屋架索力測(cè)量[J];科學(xué)技術(shù)與工程;2014年10期
8 李濤;張方;姜金輝;;基于HHT變換和獨(dú)立分量技術(shù)的模態(tài)參數(shù)識(shí)別[J];國(guó)外電子測(cè)量技術(shù);2014年03期
9 任俊超;;Galfan拉索在空間結(jié)構(gòu)中的應(yīng)用及其節(jié)點(diǎn)設(shè)計(jì)[J];建筑結(jié)構(gòu);2014年04期
10 李宏男;楊禮東;任亮;賈子光;;大連市體育館結(jié)構(gòu)健康監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與研發(fā)[J];建筑結(jié)構(gòu)學(xué)報(bào);2013年11期
相關(guān)會(huì)議論文 前3條
1 于敬海;張中宇;閆翔宇;馬青;陳志華;;天津理工大學(xué)體育館索穹頂結(jié)構(gòu)設(shè)計(jì)[A];第十六屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2016年
2 葉繼紅;;老山自行車館多點(diǎn)激勵(lì)反應(yīng)測(cè)試與分析[A];慶祝劉錫良教授八十華誕暨第八屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2008年
3 尤德清;張建華;張毅剛;高波濤;;支座施工誤差對(duì)索穹頂結(jié)構(gòu)初始預(yù)應(yīng)力的影響[A];第七屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 夏巨偉;索桿張力結(jié)構(gòu)的預(yù)張力偏差和剛度解析[D];浙江大學(xué);2014年
2 劉偉;空間網(wǎng)格結(jié)構(gòu)健康監(jiān)測(cè)系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2009年
3 沈雁彬;基于動(dòng)力特性的空間網(wǎng)格結(jié)構(gòu)狀態(tài)評(píng)估方法及檢測(cè)系統(tǒng)研究[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前9條
1 夏祥麟;環(huán)境激勵(lì)模態(tài)分析方法的比較[D];中南大學(xué);2013年
2 鄧先來(lái);環(huán)境激勵(lì)下基于小波分析的結(jié)構(gòu)模態(tài)參數(shù)識(shí)別研究[D];南京航空航天大學(xué);2012年
3 曹宇;深圳寶安體育場(chǎng)屋蓋索膜結(jié)構(gòu)施工監(jiān)測(cè)與分析[D];華南理工大學(xué);2011年
4 宋榮敏;索桿張力結(jié)構(gòu)的幾何誤差效應(yīng)分析和控制[D];浙江大學(xué);2011年
5 程軍;柔性預(yù)張力結(jié)構(gòu)的構(gòu)件長(zhǎng)度誤差敏感性分析[D];浙江大學(xué);2010年
6 蔣本衛(wèi);受荷連桿機(jī)構(gòu)的運(yùn)動(dòng)穩(wěn)定性和索桿結(jié)構(gòu)的索長(zhǎng)誤差效應(yīng)分析[D];浙江大學(xué);2008年
7 張晴雯;結(jié)構(gòu)損傷識(shí)別不確定性的研究[D];大連理工大學(xué);2007年
8 李志強(qiáng);索穹頂結(jié)構(gòu)性能研究與體系改良[D];浙江大學(xué);2007年
9 黃應(yīng)來(lái);密集模態(tài)分離及其參數(shù)識(shí)別方法研究[D];西南交通大學(xué);2007年
,本文編號(hào):1682897
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1682897.html