拱形波紋腹板鋼曲梁的承載力研究
本文選題:拱形波紋腹板鋼曲梁 切入點(diǎn):有限元分析 出處:《西安工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:拱形波紋腹板鋼曲梁作為一種新型結(jié)構(gòu)構(gòu)件,它結(jié)合了波紋腹板鋼直梁與拱形鋼曲梁的優(yōu)勢,在大跨度空間結(jié)構(gòu)、橋梁方面都有所應(yīng)用。但對其具體的內(nèi)力變化規(guī)律、抗彎承載力、抗剪承載、整體穩(wěn)定性及局部穩(wěn)定性研究甚少。本論文根據(jù)開口薄壁構(gòu)件的基本假設(shè),從精準(zhǔn)翹曲理論位移表達(dá)式出發(fā),借助能量守恒定律及虛功原理,對薄壁曲梁進(jìn)行了詳細(xì)的闡述分析,推導(dǎo)出了在考慮幾何非線性情況下曲梁的總勢能表達(dá)式,在根據(jù)歐拉公式得到了曲梁的穩(wěn)定平衡微分方程。通過有限元軟件ANSYS建模分析了,在跨中集中荷載作用下、均布徑向荷載作用下,兩端固接的拱形波紋腹板鋼梁與拱形工字鋼梁的vovMises stress應(yīng)力變化云圖、1st Principal stress應(yīng)力變化云圖、XY shear stress應(yīng)力變化云圖及Y-Component of displacement位移變化云圖的對比,得出拱形波紋腹板鋼曲梁的上下翼緣板基本只承擔(dān)彎矩和軸力,拱形波紋腹板基本只承擔(dān)剪力,其性能基本都強(qiáng)于拱形工字鋼曲梁。通過有限元軟件ANSYS,對拱形波紋腹板鋼梁的實(shí)體建模、劃分網(wǎng)格、加載及求解都進(jìn)行了詳細(xì)介紹。分析了兩端固接拱形波紋腹板鋼曲梁與拱形工字鋼曲梁在跨中集中荷載作用下,特征值屈曲的一階~五階模態(tài)對比圖,其特征屈曲值遠(yuǎn)高于拱形工字鋼曲梁。也對非線性屈曲進(jìn)行分析,得到一系列荷載—位移曲線圖及極限荷載值,得出其平面外橫向位移始終大于平面內(nèi)豎向位移,其容易發(fā)生平面外彎扭屈曲失穩(wěn)。改變拱形波紋腹板鋼曲梁的正弦波紋半波長、波高、腹板高度與厚度、翼緣板寬度與厚度、初始缺陷設(shè)置及圓心角,通過ANSYS分析整理,分別繪制了平面外水平位移u隨荷載P變化的曲線圖,平面內(nèi)的豎向位移v隨荷載P變化的曲線圖,繞拱梁縱軸扭轉(zhuǎn)的扭轉(zhuǎn)角0隨荷載P變化的曲線圖,以及極限荷載值和極限荷載值所對應(yīng)的位移值。得出隨著波高、腹板高與腹板厚、翼緣寬與翼緣厚的增加,極限承載能力增強(qiáng);隨著半波長、初始缺陷、圓心角的增大,極限承載能力減小。拱形波紋腹板鋼曲梁易發(fā)生彎扭屈曲。在均布徑向荷載作用下,兩端鉸接拱形工字鋼曲梁的彎扭屈曲臨界軸力計(jì)算公式和在兩端等彎矩作用下,簡支拱形工字鋼曲梁的彎扭屈曲臨界彎矩計(jì)算公式,分別與波紋腹板鋼直梁的波紋腹板等效剛度進(jìn)行組合,得出拱形波紋腹板鋼曲梁承載力的組合公式。但因?yàn)椴y腹板等效剛度沒有考慮拱梁曲率的影響,所以,通過ANSYS分析曲率對拱形波紋腹板鋼曲梁的影響,將有限元值與組合公式計(jì)算值進(jìn)行對比分析,且對其比值進(jìn)行多元線性回歸分析,擬合出修正系數(shù)公式,加以修正組合公式。在一般荷載作用下,拱形波紋腹板鋼曲梁屬于壓彎構(gòu)件,平衡微分方程沒有解析解,根據(jù)壓彎構(gòu)件的相關(guān)分析結(jié)果對其進(jìn)行多元線性回歸分析,得出在一般荷載作用下,拱形波紋腹板鋼曲梁彈性彎扭屈曲的內(nèi)力判別式。
[Abstract]:As a new type of structural member, arch corrugated web steel curved beam combines the advantages of corrugated web steel straight beam and arch steel curved beam, and is used in large span spatial structure and bridge. There are few studies on bending capacity, shear bearing capacity, global stability and local stability. According to the basic assumptions of thin-walled members with openings, this paper starts from the accurate displacement expression of warping theory, with the aid of the law of conservation of energy and the principle of virtual work. In this paper, the thin walled curved beam is analyzed in detail, and the total potential energy of curved beam is derived under the condition of geometric nonlinearity. According to the Euler formula, the stable equilibrium differential equation of curved beam is obtained. The finite element software ANSYS is used to model and analyze the equation. Under the action of concentrated load in span and uniform radial load, VovMises stress stress change of arch corrugated web beam and arch I-shaped steel beam at both ends; comparison of XY shear stress stress change cloud diagram and Y-Component of displacement displacement change cloud diagram with 1st Principal stress stress change cloud diagram, It is concluded that the upper and lower flange plates of arch corrugated web steel curved beam bear only bending moment and axial force, and arch corrugated web bear shear force. Its performance is basically better than that of arch I-shaped steel curved beam. Through finite element software ANSYS, the solid model of arch corrugated web plate steel beam is built and meshed. The loading and solving methods are introduced in detail. The first ~ fifth order modal comparison diagram of eigenvalue buckling between the fixed arch corrugated steel curved beam and the arch I-shaped steel curved beam under concentrated load in the span is analyzed. Its characteristic buckling value is much higher than that of arch I-beam. A series of load-displacement curves and ultimate load values are obtained by analyzing nonlinear buckling. It is concluded that the lateral displacement is always larger than the vertical displacement in the plane. The bending and torsional buckling of the arch corrugated web steel curved beam is prone to buckling instability in plane. The half-wavelength, wave height, web height and thickness, the width and thickness of flange plate, the initial defect setting and the center angle of the arch corrugated web steel curved beam are changed and analyzed by ANSYS. The curves of horizontal displacement u with load P, vertical displacement v with load P and torsion angle 0 of longitudinal axis around arch beam with load P are plotted respectively. With the wave height, the web height and the web thickness, the flange width and the flange thickness, the ultimate bearing capacity increases, with the increase of the half wavelength, the initial defect, the center angle, the displacement value corresponding to the limit load value and the limit load value, the maximum bearing capacity increases with the increase of the wave height, the web height and the web thickness, the flange width and the flange thickness. The ultimate bearing capacity is reduced. The bending and torsional buckling of arch corrugated web steel curved beam is easy to occur. Under uniform radial load, the critical axial force of bending and torsional buckling of two ends of arch I-shaped steel curved beam is calculated under uniform radial load, and under the action of equal bending moment at both ends, The formulas for calculating the critical moment of bending and torsional buckling of simply supported arch I-beam curved beams are combined with the equivalent stiffness of corrugated webs of steel straight beams with corrugated webs, respectively. The combined formula of bearing capacity of arch corrugated web steel curved beam is obtained. However, because the equivalent stiffness of corrugated web does not consider the influence of arch beam curvature, the influence of curvature on arch corrugated web steel curved beam is analyzed by ANSYS. The finite element value is compared with the calculated value of the combination formula, and the ratio is analyzed by multivariate linear regression analysis. The modified coefficient formula is fitted and the combined formula is modified. The arch corrugated web steel curved beam belongs to the compression and bending member, and the equilibrium differential equation has no analytical solution. According to the correlation analysis result of the compression and bending member, the multivariate linear regression analysis is carried out, and it is concluded that under the general load, Internal force discriminant of elastic bending and torsional buckling of arch corrugated web steel curved beam.
【學(xué)位授予單位】:西安工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU391
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李國強(qiáng);張哲;孫飛飛;;波紋腹板H型鋼梁抗剪承載力[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期
2 楊永華;劉建新;;鋼拱的平面外穩(wěn)定性分析[J];四川建筑科學(xué)研究;2009年02期
3 林冰;郭彥林;黃李驥;;均勻受壓兩鉸圓弧鋼拱的平面內(nèi)穩(wěn)定設(shè)計(jì)曲線[J];工程力學(xué);2008年09期
4 周朝陽;周云峰;;蜂窩梁等效抗彎剛度的確定方法[J];建筑科學(xué)與工程學(xué)報(bào);2008年01期
5 宋建永,任紅偉,聶建國;波紋鋼腹板剪切屈曲影響因素分析[J];公路交通科技;2005年11期
6 趙陽,陳賢川,董石麟;大跨橢球面圓形鋼拱結(jié)構(gòu)的強(qiáng)度及穩(wěn)定性分析[J];土木工程學(xué)報(bào);2005年05期
7 李琰,辛克貴;薄壁曲梁的橫向彎曲穩(wěn)定分析[J];工程力學(xué);2005年01期
8 李時(shí),郭彥林;波折腹板梁抗剪性能研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2001年06期
9 李艷文,張文志,高艾華,賈春玉;全波紋腹板H型鋼腹板屈曲性能分析[J];燕山大學(xué)學(xué)報(bào);2001年04期
10 常福清,,李恒偉;波紋腹板H型鋼梁腹板的屈曲強(qiáng)度(Ⅱ)[J];東北重型機(jī)械學(xué)院學(xué)報(bào);1996年02期
相關(guān)博士學(xué)位論文 前1條
1 楊永華;彈性開口薄壁截面圓弧鋼拱的穩(wěn)定承載力研究[D];同濟(jì)大學(xué);2006年
本文編號:1647998
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1647998.html