平移模式下剛性擋土墻三維被動滑裂面形態(tài)的試驗與數(shù)值模擬
本文關鍵詞: 剛性擋土墻 三維滑裂面 平移模式 空間形態(tài) 模型試驗 數(shù)值模擬 出處:《合肥工業(yè)大學》2017年碩士論文 論文類型:學位論文
【摘要】:擋土墻后滑裂面的空間效應是客觀存在的,研究滑裂面的空間形態(tài)對于理論分析三維土壓力具有基礎性意義。采用自主設計的模型試驗裝置,重復開展6次試驗,通過監(jiān)測脆性玻璃條的斷裂位置獲取了確切的滑裂面的空間形態(tài),并且分析了滑裂面在主平面的投影形態(tài)和土體隆起形態(tài)。用數(shù)值模擬的方法計算了100個工況,分析了滑裂面空間形態(tài)和主平面的投影形態(tài)與擋土墻寬深比、土體內摩擦角及墻土接觸面粗糙程度之間的關系。通過研究,主要獲得了以下研究成果:(1)用試驗和數(shù)值模擬的方法獲得了三維被動滑裂面形態(tài):滑裂面橫剖面寬度大于擋土墻寬度,隨著距擋土墻距離的增加,橫剖面底部的水平段寬度逐漸減小,橫剖面最低部的高度逐漸增加,橫剖面形態(tài)由“U”型逐漸變?yōu)椤癡”型;滑裂面縱剖面后半部分近似為直線,各縱剖面形態(tài)之間存在差異。(2)獲得了滑裂面在主平面上的投影形態(tài)。從擋土墻后先以斜線往外側擴展,斜線與擋土墻垂線夾角近似為擴展角,距擋土墻最遠處為與擋土墻平行但寬度小于擋土墻寬度的直線段,斜線與直線段之間近似以圓弧段連接。主平面投影形態(tài)關于擋土墻中垂線對稱。(3)對滑裂面空間形態(tài)的影響因素進行分析總結。(1)隨著擋土墻寬深比增大:滑裂面的空間特性逐漸不明顯;滑裂面縱剖面破裂角減小。(2)隨著土體內摩擦角的增加:滑裂面縱剖面直線段的破裂角逐漸減小;橫剖面最低位置的高度逐漸減小,橫剖面寬度范圍逐漸增大,橫剖面由底部往頂部過渡的趨勢由比較陡逐漸變得平緩;主平面投影形態(tài)的寬度及距擋土墻最遠距離均出現(xiàn)線性增加。(3)墻土接觸面的粗糙程度對于滑裂面的形態(tài)和主平面投影形態(tài)影響較小。(4)土體達到被動極限破壞的位移量。平移模式下有限寬深比的剛性擋土墻后無黏性土體達到被動極限破壞所需達到位移量為(10%~12%)H。
[Abstract]:The spatial effect of the sliding surface behind the retaining wall is objective. The study of the spatial form of the sliding surface is of fundamental significance to the theoretical analysis of three-dimensional earth pressure. By monitoring the fracture position of brittle glass strip, the exact spatial shape of the slip surface is obtained, and the projection shape and the soil uplift shape of the slip surface in the main plane are analyzed. The 100 working conditions are calculated by numerical simulation. This paper analyzes the relationship between the spatial shape of sliding crack surface and the projection form of main plane and the ratio of width to depth of retaining wall, the angle of internal friction of soil and the roughness of the interface between wall and soil. The following research results are obtained: (1) Three-dimensional passive sliding surface is obtained by experiment and numerical simulation: the width of the transverse section of the sliding surface is larger than the width of the retaining wall, and with the increase of the distance from the retaining wall, The width of the horizontal section at the bottom of the cross section gradually decreases, the height of the lowest part of the section increases gradually, the shape of the cross section changes from "U" to "V", the latter half of the longitudinal section of the slip surface is approximately straight line, The projection form of the slip surface on the main plane is obtained. The angle between the inclined line and the vertical line of the retaining wall is similar to that of the vertical line from the retaining wall to the outside, and the angle between the diagonal and the vertical line of the retaining wall is similar to that of the vertical line of the retaining wall. The furthest distance from the retaining wall is a straight section parallel to the retaining wall but having a width less than the width of the retaining wall, The main plane projection shape about vertical line symmetry in retaining wall. Analysis of the factors affecting the spatial form of sliding crack surface. Conclusion. 1) with the increase of the width to depth ratio of retaining wall: the sliding crack surface. The spatial characteristic is not obvious gradually; With the increase of internal friction angle of soil, the fracture angle of straight section of longitudinal section of slip fracture surface decreases gradually, the height of the lowest position of cross section decreases gradually, and the width range of cross section increases gradually. The trend of the transition from bottom to top of the cross section gradually changed from steepness to smoothness. The width of the main plane projection form and the farthest distance from the retaining wall are linearly increased.) the roughness degree of the interface between the wall and the soil has less influence on the shape of the sliding surface and the projection form of the main plane. 4) the soil reaches the passive limit failure position. Displacement. The displacement required for the passive limit failure of the non-viscous soil behind a rigid retaining wall with a finite aspect ratio in the translational mode is 10 ~ (10) and 12 ~ (12) H ~ (-1).
【學位授予單位】:合肥工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU476.4
【參考文獻】
相關期刊論文 前10條
1 陳建功;張海權;許明;趙鑫曜;楊澤君;;基于模型不確定的擋墻土壓力計算[J];巖土工程學報;2017年04期
2 楊明輝;戴夏斌;趙明華;羅宏;;墻后有限寬度無黏性土主動土壓力試驗研究[J];巖土工程學報;2016年01期
3 林慶濤;朱建明;康瑤;;考慮土拱效應的擋土墻空間土壓力研究[J];巖石力學與工程學報;2015年09期
4 陳奕柏;柯才桐;曹雄;高洪波;;平移變位模式下黏性土非極限主動土壓力[J];暨南大學學報(自然科學與醫(yī)學版);2014年04期
5 侯鍵;夏唐代;孔祥冰;孫苗苗;;基于土拱效應原理求解擋土墻被動土壓力[J];巖土力學;2012年10期
6 楊慶光;劉杰;何杰;羅善煌;;平移模式下?lián)鯄Ψ菢O限土壓力計算方法[J];巖石力學與工程學報;2012年S1期
7 王帆;程國勇;袁建新;;擋墻后土體破裂角的簡化解[J];西部探礦工程;2012年03期
8 王奎華;馬少俊;吳文兵;;擋土墻后曲面滑裂面下黏性土主動土壓力計算[J];西南交通大學學報;2011年05期
9 朱劍鋒;徐日慶;王興陳;;基于擾動狀態(tài)概念模型的剛性擋土墻土壓力理論[J];浙江大學學報(工學版);2011年06期
10 盧坤林;朱大勇;楊揚;;任意位移模式剛性擋土墻土壓力研究[J];巖土力學;2011年S1期
相關博士學位論文 前1條
1 周佳媚;隧道洞門結構土壓力的研究[D];西南交通大學;2004年
,本文編號:1551284
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1551284.html