氧化石墨烯基對(duì)水泥基材料微觀形貌的影響
本文關(guān)鍵詞: 氧化石墨烯 丙烯酸 分散性 水化晶體 微觀形貌 出處:《陜西科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:氧化石墨烯(GO)是石墨烯的氧化物,其結(jié)構(gòu)特點(diǎn)是石墨烯的二維片層上連有羧基、羰基、羥基和環(huán)氧基等基團(tuán)。這些含氧基團(tuán)使GO具有親水性,從而可以應(yīng)用到水溶液中。在課題組前期研究中發(fā)現(xiàn)在水泥基材料中摻入GO,不僅能夠調(diào)控水泥的水化產(chǎn)物和微觀結(jié)構(gòu),還可以提高水泥基材料的力學(xué)性能,但GO納米片層在水溶液中易團(tuán)聚,不能均勻分散到水泥基材料中。此外,由于GO各種含氧官能團(tuán)含量不能定量控制,因此GO也無法定性調(diào)控水泥的微觀形貌。針對(duì)此問題,本論文通過丙烯酸與GO進(jìn)行復(fù)合制備了改性氧化石墨烯(MGO),增強(qiáng)在水泥漿中的分散性,并研究了GO和MGO對(duì)水泥基材料的微觀形貌的影響,為研究水泥基材料微觀結(jié)構(gòu)提供了理論依據(jù)。(1)采用Hummer法和超聲剝離制備得到GO納米片層分散液,并對(duì)GO納米片層的化學(xué)結(jié)構(gòu)、納米尺寸及層間距進(jìn)行了表征分析。結(jié)果表明GO結(jié)構(gòu)中含有羧基(-COOH)、羥基(-OH)以及環(huán)氧基(-O-)等基團(tuán);GO納米片層厚度為1.23 nm,片層大小為200 nm至500 nm。冷凍干燥后的GO片層間距由0.34 nm擴(kuò)大至0.86 nm。同時(shí)研究了GO在不同溶劑和不同pH值環(huán)境中的分散性,結(jié)果顯示GO在常見的有機(jī)溶劑(乙醇、丙酮)和強(qiáng)酸強(qiáng)堿性的環(huán)境中分散性差,在水和表面活性劑溶液中的分散效果較好。(2)通過Hummer法制備了氧化石墨,再采用N,N-亞甲基雙丙烯酰胺為交聯(lián)劑,與丙烯酸聚合形成MGO,并對(duì)MGO納米片層的結(jié)構(gòu)和分散性進(jìn)行了表征與測(cè)試。研究結(jié)果表明:改性后的MGO納米片層上的含氧官能團(tuán)種類與GO相同,但-COOH和C=C含量分別增加了2.56%、5.26%;MGO納米片層大小為100 nm至500 nm,片層厚度為0.67 nm,比GO納米片層的薄。此外,MGO在中性和堿性條件下納米片層不會(huì)出現(xiàn)團(tuán)聚現(xiàn)象。(3)研究了分別摻入GO和MGO后的發(fā)泡輕質(zhì)水泥復(fù)合材料的表觀密度與吸水率之間的關(guān)系、微觀形貌的變化、孔結(jié)構(gòu)以及其力學(xué)性能的變化。研究結(jié)果表明:摻入質(zhì)量分?jǐn)?shù)為0.03%GO或0.05%MGO可以提高發(fā)泡輕質(zhì)水泥復(fù)合材料的吸水率,但摻入MGO提高幅度較大。相比較于摻入0.03%GO時(shí)形成的花瓣?duì)、螺紋片狀、鳥巢狀和多面體狀等多種水泥基材料微觀形貌,摻入0.05%MGO的發(fā)泡輕質(zhì)水泥復(fù)合材料形成的微觀形貌以花片螺紋狀為主。摻入GO和MGO降低了水泥石的孔隙率,減少了裂縫的產(chǎn)生,提高了水泥基材料的抗壓強(qiáng)度和抗折強(qiáng)度。(4)通過對(duì)GO和MGO影響水泥基材料的微觀形貌的作用機(jī)理的討論,可以發(fā)現(xiàn)GO有利于水化晶體的生長,而且羧基增多的MGO更有利于水化晶體的形成。GO納米片層上的含氧官能團(tuán)對(duì)水泥水化產(chǎn)物的作用具有競(jìng)爭(zhēng)和選擇的作用。
[Abstract]:Graphene oxide (GOO) is an oxide of graphene. Its structure is characterized by the existence of carboxyl, carbonyl, hydroxyl and epoxy groups on the two-dimensional lamellar of graphene, which make go hydrophilic. So it can be applied to aqueous solution. In the previous study of our group, it was found that the incorporation of goo in cement based materials can not only regulate the hydration products and microstructure of cement, but also improve the mechanical properties of cement based materials. However, go nanoparticles are easy to agglomerate in aqueous solution and can not be uniformly dispersed into cement based materials. In addition, the content of various oxygen functional groups in go cannot be quantitatively controlled. Therefore, go can not qualitatively control the microstructure of cement. In order to solve this problem, the modified graphene oxide (MGOA) was prepared by the combination of acrylic acid and go to enhance the dispersion in cement slurry. The effects of go and MGO on the microstructure of cement-based materials were studied. It provides a theoretical basis for studying the microstructure of cement-based materials. (1) the go nano-lamellar dispersion was prepared by Hummer method and ultrasonic peeling, and the chemical structure of go nano-lamellar was also studied. The nano size and interlayer spacing were characterized and analyzed. The results showed that the go structure contained carboxyl group, hydroxyl group, hydroxyl group and epoxy group group. The thickness of go nanochip is 1.23 nm. The lamellar size ranged from 200 nm to 500 nm. The gap between the freeze-dried go layers increased from 0.34 nm to 0.86 nm. At the same time, the dispersion of go in different solvents and pH was studied. The results showed that the dispersion of go was poor in common organic solvents (ethanol, acetone) and strong acid and strong alkalinity. Graphite oxide was prepared by Hummer method and then the crosslinking agent was N- N- methylene bisacrylamide. The structure and dispersity of MGO nanocrystalline were characterized and tested. The results showed that the types of oxygen-containing functional groups on the modified MGO nanoparticles were the same as go. However, the contents of -COOH and CnC increased 2.56% and 5.26%, respectively. The size of MGO nanocrystals ranged from 100nm to 500nm, and the thickness of the layers was 0.67nm, which was thinner than that of go nanoliths. The relationship between apparent density and water absorption of foamed lightweight cement composites doped with go and MGO respectively was studied. The change of micromorphology. The change of pore structure and mechanical properties. The results show that the water absorption of foamed lightweight cement composites can be improved by adding 0.03GO or 0.05 MGO. Compared with 0.03GO, the microstructures of cement-based materials, such as petal, threaded, bird's nest and polyhedron, were increased by adding MGO. The micro-morphology of foamed lightweight cement composites with 0.05% MGO was mainly floral thread. Incorporation of go and MGO reduced the porosity of cement stone and the formation of cracks. The compressive strength and flexural strength of cement-based materials were improved. (4) by discussing the action mechanism of go and MGO on the micromorphology of cement-based materials, it was found that go was beneficial to the growth of hydrated crystals. Moreover, MGO with more carboxyl groups is more conducive to the formation of hydrated crystals. The oxygen-containing functional groups on the nanocrystalline go have a competitive and selective effect on the hydration products of cement.
【學(xué)位授予單位】:陜西科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ172.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 代雪艷;金祖權(quán);陳永豐;李建強(qiáng);;碳纖維增強(qiáng)水泥基陽極板導(dǎo)電及韌性研究[J];硅酸鹽通報(bào);2016年12期
2 姚偉林;熊國宣;黃海清;周瑜芬;楊Ze;;摻鎳?yán)w維的水泥基復(fù)合材料導(dǎo)電性能研究[J];新型建筑材料;2016年08期
3 蘭明章;代丹丹;陳智豐;周健;劉成健;;超輕發(fā)泡水泥保溫板孔結(jié)構(gòu)與性能關(guān)系研究[J];硅酸鹽通報(bào);2016年02期
4 馮輝紅;李夢(mèng)君;高揚(yáng);;溶膠-凝膠法制備鐵氧體材料及應(yīng)用于建筑吸波領(lǐng)域的研究[J];應(yīng)用化工;2016年01期
5 王琴;王健;呂春祥;劉伯偉;張昆;李崇智;;氧化石墨烯對(duì)水泥基復(fù)合材料微觀結(jié)構(gòu)和力學(xué)性能的影響(英文)[J];新型炭材料;2015年04期
6 付金強(qiáng);周訓(xùn)海;孫昌華;郝斌;;高效稀土永磁電動(dòng)機(jī)在水泥生產(chǎn)中的應(yīng)用[J];水泥;2015年08期
7 馬保國;梅軍鵬;韓磊;陳方頡;;納米TiO_2對(duì)水泥基材料的增韌效果及作用機(jī)制[J];功能材料;2015年12期
8 呂生華;崔亞亞;孫婷;趙海峰;劉晶晶;丁懷東;;氧化石墨烯對(duì)水泥凈漿流動(dòng)度及水泥石結(jié)構(gòu)和性能的影響[J];功能材料;2015年04期
9 李國興;趙景珊;孫科;王強(qiáng);王明;;原位聚合制備聚氨酯/氧化石墨烯納米復(fù)合材料的力學(xué)性能和熱穩(wěn)定性能研究[J];材料研究學(xué)報(bào);2014年12期
10 張聰;曹明莉;;多尺度纖維增強(qiáng)水泥基復(fù)合材料力學(xué)性能試驗(yàn)[J];復(fù)合材料學(xué)報(bào);2014年03期
相關(guān)博士學(xué)位論文 前1條
1 孫威;利用壓電陶瓷的智能混凝土結(jié)構(gòu)健康監(jiān)測(cè)技術(shù)[D];大連理工大學(xué);2009年
相關(guān)碩士學(xué)位論文 前7條
1 易峰;水泥基碳纖維導(dǎo)電復(fù)合材料的制備與研究[D];深圳大學(xué);2016年
2 袁曉;徑向壓電超聲傳感器在混凝土檢測(cè)中的應(yīng)用[D];濟(jì)南大學(xué);2016年
3 杜濤;氧化石墨烯水泥基復(fù)合材料性能研究[D];哈爾濱工業(yè)大學(xué);2014年
4 薛常喜;自感知鎳粉水泥基復(fù)合材料及其應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2013年
5 張文;混凝土水泥水化過程的電化學(xué)阻抗譜研究[D];大連理工大學(xué);2013年
6 金舜;石墨系導(dǎo)電功能集料及其水泥基復(fù)合材料的制備和性能研究[D];武漢理工大學(xué);2010年
7 李志飛;納米碳黑/碳纖維水泥基復(fù)合材料長期力電性能的研究[D];汕頭大學(xué);2009年
,本文編號(hào):1460349
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1460349.html