胎盤細(xì)胞的分離培養(yǎng)及其與母血、臍血細(xì)胞嵌合情況的研究
[Abstract]:In recent years, stem cells have shown broad application prospects in regenerative medicine, cell replacement therapy and drug screening due to their dual characteristics of self-renewal and multi-directional differentiation potential. But in modern medicine, there are still many diseases which can not be cured completely by the current medical level. Some of them are related to the necrosis of cells, tissues and even organs, such as diabetes, immune dysfunction, Alzheimer's disease and Parkinson's disease. The emergence and gradual in-depth study of stem cells also bring about the cure of these diseases. The main sources and potential sources of stem cells include blastocysts, fetal tissues, umbilical cord blood and adult tissues. In clinical trials and applications of many types of stem cells, the theoretical basis and technical methods of hematopoietic stem cell transplantation are relatively mature. Hematopoietic stem cell transplantation is currently used in most malignant hematological malignancies. Hematopoietic stem cell transplantation mainly includes autologous transplantation and allogeneic transplantation. In the past, the ideal source of hematopoietic stem cells was bone marrow and peripheral blood, but it came from adult and therefore dry. Since the 1980s, umbilical cord blood has attracted the attention of researchers because of its abundant hematopoietic stem cell content. The clinical application of umbilical cord blood-derived stem cells has developed rapidly, and they are ideal for hematopoietic reconstruction and immune system reconstruction. Umbilical cord blood stem cells have abundant sources and low immunogenicity, but the small number of cells contained in a single umbilical cord blood limits the scope of its clinical application. Therefore, to find a wider and more suitable cell source becomes a breakthrough in the clinical application of hematopoietic stem cell transplantation. The placenta is usually a waste produced during childbirth. However, in recent years, many studies have found that many kinds of stem, progenitor cells exist in the placenta, that is, the placenta. As a rich stem-progenitor cell bank, it has attracted more and more attention and exploration. The existence of a large number of cell groups shows its great potential in the future clinical application of regenerative medicine. Based on the existing experimental studies and related results, we can infer that more in-depth and detailed study of placental-derived cells and a full understanding of their biological characteristics are crucial to the selection and promotion of their early clinical application. The main purpose of this study is to detect the total number of mononuclear cells in the placenta and the number of CD34 + cells in the placenta and to compare them with a single umbilical cord. The number of cells in blood was compared, the colony formation of cells from placenta and umbilical cord blood was observed, the HLA types of placenta-derived cells, maternal blood-derived cells and umbilical cord blood-derived cells were detected respectively, and the degree of chimerism between placenta-derived cells and maternal blood and umbilical cord blood cells was detected by STR-PCR, which provided relevant theory for clinical application in the future. This study is divided into the following two parts: 1. The total number of cells in placenta and umbilical cord blood and the proportion of CD34 + cells in them. With the approval of the committee, we collected the umbilical cord blood and its placenta from five healthy full-term cesarean mothers. During delivery, the umbilical cord blood was extracted and placed in a disposable plastic blood bag for temporary preservation, centrifuged and counted the cells in the lower layer. Push and collect the blood in the placental vein, perfuse the placental vein system with saline containing 10g/L AMD3100, clamp the umbilical artery and incubate for 30 minutes, collect the perfusion fluid, centrifuge the blood and perfusion fluid in the placental vein and count the cells in the lower layer. The number and proportion of CD34 + cells in cord blood and placenta derived cells were measured by flow cytometry. The cord blood and placenta derived cells were added into 1.1mL medium by 5 *104 and inoculated into 1.1mL medium respectively. The results showed that the total number of cells, the number of CD34 + cells and their proportion in placenta were significantly higher than those in umbilical cord blood. Colony culture dishes of placenta and umbilical cord blood were observed on day 6 and day 14 after inoculation. Good colony formation can be observed. However, at the same inoculation density as umbilical cord blood cells, the number of colonies formed by placental-derived cells is relatively small. Placenta-derived cells have a variety of colony-forming abilities, and colony-forming ability is an important assessment of the differentiation and proliferation potential of hematopoietic stem-progenitor cells. 2. HLA detection of placenta-derived cells and detection of their chimerism with maternal and umbilical cord blood-derived cells. The HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 loci of placenta-derived cells, maternal blood cells and umbilical cord blood cells were detected respectively. The results of HLA detection showed that two of the five samples in this study contained maternal components, and the other three showed that placenta-derived cells and umbilical cord blood cell loci were identical. The results of TR-PCR showed that all five placenta samples had maternal component chimerism, and HLA detection suggested that the maternal component chimerism rate was especially high in two cases with maternal component. The results suggest that the current isolation methods do mix maternal-derived components in the placenta, and further research is needed to determine whether the maternal-derived components have an impact on clinical transplantation outcomes. At the same time, HLA and STR-PCR were used to detect the origin of placental cells and their chimerism with maternal and fetal components, and the small chimerism ratio was detected more accurately, which laid a foundation for the potential clinical application feasibility and method selection. Foundation.
【學(xué)位授予單位】:中國人民解放軍軍事醫(yī)學(xué)科學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R457.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫清,孫卓貴,施秀紅;產(chǎn)后大面積胎盤殘留48天一例[J];臨床誤診誤治;2000年03期
2 王雪蓮,黃艷君,范麗華,孟凡悅,王敏;筒狀胎盤完全植入1例[J];中國實(shí)用婦科與產(chǎn)科雜志;2003年01期
3 衛(wèi)遠(yuǎn)山;;亂食鮮胎盤可能惹禍端[J];家庭醫(yī)學(xué)(下半月);2011年04期
4 賀茜,沙金燕,張黎明,陳雄;胎盤組織中促腎上腺皮質(zhì)激素釋放激素的免疫組化研究[J];第二軍醫(yī)大學(xué)學(xué)報(bào);2000年12期
5 羅支農(nóng),韋懷新,黃新生,王新玉,郭會(huì)平,劉剛純,曹曉樺,郭靜;彩色多普勒能量圖在晚期產(chǎn)后胎盤滯留診斷中的應(yīng)用[J];中國超聲醫(yī)學(xué)雜志;2000年08期
6 劉霞,李力;妊高征中胎盤血管內(nèi)皮生長因子的表達(dá)及其與胎盤釋放血管活性物質(zhì)的關(guān)系[J];免疫學(xué)雜志;2001年01期
7 羅支農(nóng),王新玉,韋懷新,劉剛純,曹曉樺,陳春艾;能量多普勒增強(qiáng)造影在晚期產(chǎn)后胎盤滯留診斷中的應(yīng)用[J];中國超聲醫(yī)學(xué)雜志;2001年03期
8 王靜雯;血管內(nèi)皮生長因子在妊高征胎盤中的表達(dá)研究[J];中國現(xiàn)代醫(yī)學(xué)雜志;2001年09期
9 李瀟;;科學(xué)家試圖揭開胎盤之謎[J];國外醫(yī)學(xué)情報(bào);2001年07期
10 劉霞,李力,周元國,郭建新,熊仁平;妊娠高血壓綜合征患者胎盤血管內(nèi)皮生長因子的表達(dá)及其意義[J];中華婦產(chǎn)科雜志;2002年01期
相關(guān)會(huì)議論文 前10條
1 李東紅;姜鋒;姚元慶;楊夢(mèng)庚;鄭維國;;妊高征胎盤組織差異表達(dá)基因的篩選與確定[A];第八次全國婦產(chǎn)科學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2004年
2 尚麗新;王晶;;妊娠期高血壓疾病患者血清及胎盤組織中胰島素樣生長因子-1水平變化的研究[A];中華醫(yī)學(xué)會(huì)第五次全國圍產(chǎn)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2005年
3 艾瑛;劉淑蕓;;轉(zhuǎn)化生長因子-β及其受體在妊娠期肝內(nèi)膽汁淤積癥患者胎盤中的表達(dá)[A];中華醫(yī)學(xué)會(huì)第五次全國圍產(chǎn)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2005年
4 鐘文筠;周君桂;龐戰(zhàn)軍;;妊娠高血壓綜合征胎盤組織中細(xì)胞因子基因的表達(dá)[A];第六屆全國優(yōu)生科學(xué)大會(huì)論文匯編[C];2006年
5 陳鎮(zhèn)燕;李靜;黃光英;;胎盤血管與胎兒長受限[A];中國微循環(huán)學(xué)會(huì)2011年全國學(xué)術(shù)會(huì)議論文匯編[C];2011年
6 張曦;侯磊;崔世紅;張彩霞;劉愛清;;胎盤組織中肝細(xì)胞生長因子及其受體的表達(dá)[A];第八次全國婦產(chǎn)科學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2004年
7 張曦;侯磊;崔世紅;張彩霞;劉愛清;;妊娠高血壓綜合征患者胎盤組織中肝細(xì)胞生長因子及其受體的表達(dá)[A];第八次全國婦產(chǎn)科學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2004年
8 趙晉英;侯玉英;饒華祥;楊瑞;劉智深;張淑萍;侯麗萍;徐秀文;祝壽芬;;弓形蟲感染對(duì)孕鼠胎盤組織凋亡的影響[A];中華醫(yī)學(xué)會(huì)熱帶病與寄生蟲學(xué)分會(huì)機(jī)會(huì)性感染學(xué)術(shù)研討會(huì)論文匯編[C];2007年
9 張愛臣;孫小淳;;妊娠期高血壓疾病患者胎盤中血小板源性生長因子和血管細(xì)胞粘附分子的表達(dá)及其臨床意義[A];東北三省第四屆婦產(chǎn)科學(xué)術(shù)會(huì)議論文匯編[C];2008年
10 張桂瑜;楊守和;;巨大胎盤伴胎盤出血壞死1例[A];2003年全國醫(yī)學(xué)影像技術(shù)學(xué)術(shù)會(huì)議論文匯編[C];2003年
相關(guān)重要報(bào)紙文章 前4條
1 王麗萍 高泓娟;食用胎盤是否安全[N];市場(chǎng)報(bào);2000年
2 主治醫(yī)師 江妹;吃胎盤大補(bǔ)嗎?[N];保健時(shí)報(bào);2006年
3 鄭惠方;流產(chǎn)過多易致產(chǎn)后大出血[N];大眾衛(wèi)生報(bào);2003年
4 黃利慧;流產(chǎn)過多易致產(chǎn)后大出血[N];大眾衛(wèi)生報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 烏仁塔娜;高原適應(yīng)遺傳機(jī)制及藏族胎盤組織表達(dá)譜研究[D];青海大學(xué);2015年
2 李東紅;妊高征患者胎盤組織差異表達(dá)基因的篩選與確定[D];中國人民解放軍第四軍醫(yī)大學(xué);2003年
3 胡雅毅;妊娠期肝內(nèi)膽汁淤積癥患者胎盤上缺氧誘導(dǎo)因子的初步研究[D];四川大學(xué);2005年
4 張婷;妊娠期肝內(nèi)膽汁淤積癥患者胎盤差異表達(dá)蛋白的篩選及功能研究[D];南京醫(yī)科大學(xué);2013年
5 劉彥霞;胎盤血管病變發(fā)病機(jī)理的研究[D];山東大學(xué);2008年
6 蔣穎;宮內(nèi)高糖環(huán)境對(duì)胎盤基因印記的影響及其遺傳效應(yīng)機(jī)制的研究[D];浙江大學(xué);2013年
7 樊江峰;正常妊娠和分娩及藥物流產(chǎn)牦牛胎盤組織的細(xì)胞凋亡及其調(diào)節(jié)機(jī)制研究[D];甘肅農(nóng)業(yè)大學(xué);2012年
8 彭冰;人類白細(xì)胞抗原G、E在人胎盤組織的表達(dá)及其與妊娠期肝內(nèi)膽汁淤積癥的關(guān)系[D];四川大學(xué);2005年
9 王曉東;促腎上腺皮質(zhì)激素釋放激素及其受體CRH-R1在妊娠肝內(nèi)膽汁淤積癥胎盤組織的表達(dá)研究[D];四川大學(xué);2004年
10 王清德;妊娠高血壓綜合征發(fā)病機(jī)制的探討[D];中國協(xié)和醫(yī)科大學(xué);1995年
相關(guān)碩士學(xué)位論文 前10條
1 胡海軍;妊娠期肝內(nèi)膽汁淤積癥患者胎盤組織中HSP70、HIF-1α的表達(dá)及意義[D];川北醫(yī)學(xué)院;2015年
2 宋玉杰;NGAL在子癇前期患者血液、尿液及胎盤組織中的表達(dá)及臨床意義[D];河北醫(yī)科大學(xué);2015年
3 莫崢;胎盤細(xì)胞的分離培養(yǎng)及其與母血、臍血細(xì)胞嵌合情況的研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2015年
4 石小芳;AQP11在羊水量異常產(chǎn)婦胎盤和胎膜中的表達(dá)變化及意義[D];蘭州大學(xué);2015年
5 栗虹;妊娠合并甲狀腺功能減退大鼠胎盤、甲狀腺組織中TNF-α、IL-10的表達(dá)及其與妊娠期高血壓疾病的關(guān)系[D];山西醫(yī)科大學(xué);2015年
6 朱曉丹;IL-37在重度子癇前期患者胎盤組織中的表達(dá)[D];山東大學(xué);2015年
7 楊瑞芳;促腎上腺皮質(zhì)激素釋放激素對(duì)胎盤甾體激素合成調(diào)節(jié)及其機(jī)制的研究[D];第二軍醫(yī)大學(xué);2004年
8 侯秀紅;跨膜型血管內(nèi)皮生長因子受體1在妊娠高血壓綜合征胎盤組織中的表達(dá)及其意義[D];第四軍醫(yī)大學(xué);2005年
9 孫曉玲;脂聯(lián)素及其受體在妊娠期糖尿病胎盤部位表達(dá)的研究[D];山西醫(yī)科大學(xué);2008年
10 張春霞;腫瘤壞死因子-α及轉(zhuǎn)化生長因子-β1在妊娠期高血壓疾病患者胎盤組織中的表達(dá)及意義[D];青島大學(xué);2006年
,本文編號(hào):2197118
本文鏈接:http://sikaile.net/huliyixuelunwen/2197118.html