基于多核DSP的磁共振成像數(shù)據(jù)處理電路設計
發(fā)布時間:2018-03-06 03:11
本文選題:并行磁共振 切入點:多核DSP 出處:《北京化工大學》2015年碩士論文 論文類型:學位論文
【摘要】:磁共振成像作為一種無電離輻射的非介入性成像技術(shù)在醫(yī)療診斷領(lǐng)域有著非常廣泛的應用。當前磁共振成像的主要研究方向為基于多通道接收的并行磁共振成像技術(shù),該技術(shù)可以縮短成像時間,或利用相同的成像時間提升圖像質(zhì)量。本文設計了一種用于并行磁共振成像技術(shù)的數(shù)據(jù)處理電路,該電路利用多核DSP強大的計算能力加速多通道圖像的重建,并通過對采樣信號的直接處理提升圖像信噪比。本文在研究了并行磁共振成像數(shù)據(jù)接收和多通道重建算法的基礎(chǔ)上,針對現(xiàn)有磁共振成像譜儀計算能力的不足,提出了多核DSP+FPGA的磁共振成像數(shù)據(jù)處理電路設計方案。該方案利用多核DSP在譜儀內(nèi)部對多通道采集數(shù)據(jù)進行實時重建,在提升圖像信噪比的同時降低了圖像的重建時間。根據(jù)該方案詳細設計了數(shù)據(jù)處理電路的各個模塊,然后在數(shù)據(jù)處理電路板上分別對外部DDR3存儲、SRIO和千兆以太網(wǎng)等外設進行了測試。軟件設計部分,針對多核DSP的結(jié)構(gòu),深入研究了多核DSP的程序并行設計方法;選用了二維快速傅里葉變換+SoS合成算法作為多通道圖像重建算法,并根據(jù)多核DSP的特性對該算法進行了多種優(yōu)化,根據(jù)程序并行設計方法對重建算法進行了重新設計,最后將并行設計后的重建算法在數(shù)據(jù)處理板的4個DSP核上進行了驗證。實驗結(jié)果表明,多核DSP作為磁共振成像數(shù)據(jù)處理核心可以大大縮短并行磁共振系統(tǒng)中圖像重建的時間,基于多核DSP的磁共振成像數(shù)據(jù)處理電路滿足實驗現(xiàn)有譜儀的升級需求,且能夠?qū)崿F(xiàn)并行磁共振成像系統(tǒng)中多通道數(shù)據(jù)的實時重建。
[Abstract]:As a non-ionizing radiation non-interventional imaging technique, magnetic resonance imaging has been widely used in the field of medical diagnosis. At present, the main research direction of magnetic resonance imaging is parallel magnetic resonance imaging based on multi-channel reception. This technique can shorten the imaging time or improve the image quality with the same imaging time. In this paper, a data processing circuit for parallel magnetic resonance imaging is designed. The circuit uses the powerful computing power of multi-core DSP to speed up the reconstruction of multi-channel images, and improves the signal-to-noise ratio of images by direct processing of sampled signals. In this paper, we study the parallel magnetic resonance imaging data reception and multi-channel reconstruction algorithms. Aiming at the deficiency of the existing Mr spectrometer, a design scheme of magnetic resonance imaging data processing circuit for multi-core DSP FPGA is proposed, which uses multi-core DSP to reconstruct the multi-channel data in real time. The signal to noise ratio (SNR) of the image is raised and the reconstruction time of the image is reduced. According to this scheme, the modules of the data processing circuit are designed in detail. Then the external DDR3 storage devices such as SRIO and Gigabit Ethernet are tested on the data processing circuit board respectively. In the part of software design, the parallel programming method of multi-core DSP is deeply studied in view of the structure of multi-core DSP. The 2-D Fast Fourier transform (SoS) synthesis algorithm is selected as the multi-channel image reconstruction algorithm. The algorithm is optimized according to the characteristics of multi-core DSP, and the reconstruction algorithm is redesigned according to the parallel programming method. Finally, the parallel designed reconstruction algorithm is verified on the four DSP cores of the data processing board. The experimental results show that the multi-core DSP as the core of MRI data processing can greatly shorten the time of image reconstruction in the parallel magnetic resonance system. The magnetic resonance imaging data processing circuit based on multi-core DSP can meet the need of upgrading the existing spectrometer and realize the real-time reconstruction of multi-channel data in parallel magnetic resonance imaging system.
【學位授予單位】:北京化工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:R445.2;TP274.2
【參考文獻】
相關(guān)博士學位論文 前1條
1 孫科林;基于多核DSP的實時圖像處理平臺研究[D];電子科技大學;2012年
,本文編號:1573070
本文鏈接:http://sikaile.net/huliyixuelunwen/1573070.html
最近更新
教材專著