基于大眾外包方法的紡錘波檢測可行性分析
本文關(guān)鍵詞:基于大眾外包方法的紡錘波檢測可行性分析 出處:《西安電子科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 睡眠紡錘波 在線睡眠研究問卷調(diào)查 在線檢測紡錘波系統(tǒng) 眾包
【摘要】:睡眠紡錘波(Spindle)是非快速眼動(dòng)睡眠(NREM)N2階段的標(biāo)志,它的頻率范圍為11~16Hz,產(chǎn)生時(shí)間大于0.5秒,振幅先增大后減小,形狀類似于梭子。紡錘波在人的記憶和智力的機(jī)制研究中,以及在一些精神類疾病的臨床診斷上都有重要作用。到目前為止,紡錘波自動(dòng)檢測算法層出不窮,而基于肉眼觀測的手動(dòng)劃分一直以來都是準(zhǔn)確率最高的方法,同時(shí)專家的肉眼手動(dòng)劃分被稱為紡錘波檢測的金標(biāo)準(zhǔn),但是專家一般需要經(jīng)過專業(yè)培訓(xùn)而且很難找到,所以本文通過大眾外包的方法獲得了大量非專家標(biāo)記的紡錘波數(shù)據(jù)集,然后得到非專家組的標(biāo)準(zhǔn),并將其與專家組的金標(biāo)準(zhǔn)進(jìn)行對(duì)比,來看看是否可以通過非專家組的標(biāo)準(zhǔn)來代替專家組的金標(biāo)準(zhǔn)。在進(jìn)行本文的實(shí)驗(yàn)之前,我們需要采集并選取一些實(shí)驗(yàn)所用的睡眠腦電數(shù)據(jù)。在采集腦電數(shù)據(jù)之前,需要被試填寫一些量表來對(duì)被試近期的情緒、睡眠以及其他情況進(jìn)行簡要評(píng)估,所以開發(fā)了在線睡眠研究問卷調(diào)查系統(tǒng)。該系統(tǒng)代替了傳統(tǒng)的紙質(zhì)問卷調(diào)查,一方面使得作用范圍更廣、速度更快,另一方面可以節(jié)省很大的人力、財(cái)力、物力和時(shí)間,而且可以將調(diào)查的數(shù)據(jù)全部存儲(chǔ)于計(jì)算機(jī)中,以便隨時(shí)使用。由于一個(gè)人一晚上的睡眠腦電數(shù)據(jù)量很大,而且本研究是通過大眾外包的方法來標(biāo)記紡錘波的,所以參與標(biāo)記紡錘波的被試會(huì)很多,因此最終需要處理的數(shù)據(jù)量會(huì)很大。如果采用MATLAB離線方式來標(biāo)記紡錘波的話,后期數(shù)據(jù)統(tǒng)計(jì)和數(shù)據(jù)處理都會(huì)比較繁瑣,所以開發(fā)了基于WEB的在線檢測紡錘波系統(tǒng)。那么只需要被試身邊有一臺(tái)電腦就可以在線標(biāo)記紡錘波,然后將標(biāo)記的結(jié)果存儲(chǔ)到遠(yuǎn)程數(shù)據(jù)庫。對(duì)專家組和非專家組通過在線檢測紡錘波系統(tǒng)標(biāo)記的數(shù)據(jù)集進(jìn)行分析,可以得到以下結(jié)論:對(duì)于專家組來說,組閾值T-group為0.3和重疊閾值T-overlap為0.45時(shí),此時(shí)專家組金標(biāo)準(zhǔn)是最優(yōu)的。所有的專家與專家組金標(biāo)準(zhǔn)比較,其平均表現(xiàn)為0.84007±0.023(均值±方差),這表明每位專家與專家組金標(biāo)準(zhǔn)具有較好的一致性。對(duì)于非專家組來說,組閾值T-group為0.35和重疊閾值T-overlap為0.3時(shí),非專家組標(biāo)準(zhǔn)是最優(yōu)的。所有的非專家與非專家組標(biāo)準(zhǔn)進(jìn)行比較,其平均表現(xiàn)為0.7246±0.1008(均值±方差),顯然與專家組的平均表現(xiàn)相比,非專家組平均表現(xiàn)的均值變小,方差變大。這說明非專家之間的一致性不如專家的高。非專家組標(biāo)準(zhǔn)與專家組金標(biāo)準(zhǔn)比較的F1值為0.7557,也就是說雖然非專家之間的一致性沒有專家之間的高,但是非專家組標(biāo)準(zhǔn)與專家組金標(biāo)準(zhǔn)的差別程度還是可以接受的,即由非專家組標(biāo)準(zhǔn)代替專家組標(biāo)準(zhǔn)可行的。同時(shí)還將非專家組標(biāo)準(zhǔn)和RMS自動(dòng)檢測算法進(jìn)行對(duì)比,發(fā)現(xiàn)非專家組標(biāo)準(zhǔn)是優(yōu)于RMS自動(dòng)算法的。
[Abstract]:Sleep spindle is a non-REM sleep NREMN _ 2 stage marker, its frequency range is 114Hzand the time of generation is more than 0.5 seconds. The amplitude increases first and then decreases, similar to the shape of the shuttle. Spindles play an important role in the study of the mechanism of human memory and intelligence, as well as in the clinical diagnosis of some mental disorders. So far. Automatic spindle wave detection algorithms emerge one after another, and manual partition based on naked eye observation has always been the most accurate method, and the expert manual partition is called the gold standard of spindle wave detection. However, experts usually need professional training and are difficult to find, so this paper obtains a large number of non-expert mark spindle wave data set through the method of public outsourcing, and then get the standard of non-expert group. And compare it with the gold standard of the expert group to see whether the gold standard of the expert group can be replaced by the standard of non-expert group. We need to collect and select sleep EEG data used in some experiments. Before we collect EEG data, we need to fill out a number of scales to briefly assess the participants' recent mood, sleep and other conditions. Therefore, an online sleep research questionnaire system has been developed. This system replaces the traditional paper questionnaire. On the one hand, it makes the function wider and faster, on the other hand, it can save a lot of manpower and financial resources. Material resources and time, and all the data can be stored in the computer, in order to use at any time. Because a person's sleep EEG data volume is very large. And this study is through the mass outsourcing method to mark the spindle wave, so many participants involved in marking spindle wave. Therefore, the amount of data to be processed will be very large. If the MATLAB off-line method is used to mark the spindle wave, the later data statistics and data processing will be more cumbersome. Therefore, an on-line spindle wave detection system based on WEB is developed, and only a computer is needed to mark the spindle wave online. The results of marking are then stored in the remote database. By analyzing the data sets of the expert group and the non-expert group through the on-line detection of the marking of the spindle wave system, the following conclusions can be drawn: for the expert group. When the group threshold T-group is 0.3 and the overlap threshold T-overlap is 0.45, the expert group gold standard is optimal. All experts are compared with the expert group gold standard. Its average performance is 0.84007 鹵0.023 (mean 鹵variance), which indicates that each expert has good consistency with expert group gold standard. When the group threshold T-group was 0.35 and the overlap threshold T-overlap was 0.3, the non-expert group criterion was the best. All the non-experts were compared with the non-expert group standard. Its average performance is 0.7246 鹵0.1008 (mean 鹵variance), obviously compared with the average performance of the expert group, the average performance of the non-expert group is smaller. The variance increases. This shows that the consistency among non-experts is not as high as that of experts. The F1 value of the non-expert group standard compared with the expert group gold standard is 0.7557. That is, although the consistency among non-experts is not as high as that among experts, the difference between the non-expert group criteria and the expert group gold criteria is acceptable. That is to say, it is feasible to replace the expert group standard with the non-expert group standard. At the same time, the comparison between the non-expert group standard and the RMS automatic detection algorithm shows that the non-expert group standard is superior to the RMS automatic algorithm.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R740
【相似文獻(xiàn)】
相關(guān)期刊論文 前9條
1 耿梅;李倩;祝小英;;癲癇患兒異常睡眠紡錘波變化分析[J];河北醫(yī)藥;2012年06期
2 季忠,秦樹人,彭麗玲;基于匹配跟蹤的腦電睡眠紡錘波的時(shí)頻分析[J];上海交通大學(xué)學(xué)報(bào);2003年09期
3 焦明德,沈香春,丁華,劉曉娟;小兒睡眠紡錘波分型的探討[J];哈爾濱醫(yī)科大學(xué)學(xué)報(bào);1991年06期
4 景蕓蕓;徐曉霞;康曉剛;蔣斌;江文;;睡眠紡錘波在植物狀態(tài)病人預(yù)后判別中的價(jià)值研究[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2012年11期
5 封洲燕,鄭筱祥;多分辨率小波信號(hào)分解用于大鼠睡眠紡錘波的分析[J];中國生物醫(yī)學(xué)工程學(xué)報(bào);2004年02期
6 孔峰;逯成音;史玫;;動(dòng)態(tài)腦電圖監(jiān)測癲癇患兒異常睡眠紡錘波與癲癇病因關(guān)系的研究[J];河南醫(yī)學(xué)研究;2007年04期
7 張慧秀,朱國慶,,張景行,孔秀;嬰兒夜間睡眠腦電紡錘波的觀察[J];中國應(yīng)用生理學(xué)雜志;1995年03期
8 張杰;盛曉陽;;缺鐵性貧血對(duì)嬰幼兒睡眠的影響[J];中華婦幼臨床醫(yī)學(xué)雜志(電子版);2012年03期
9 ;[J];;年期
相關(guān)會(huì)議論文 前1條
1 王雀良;潘集陽;王絲絲;劉亞平;彭博;石順治;;慢性心理生理性失眠患者睡眠紡錘波特征的對(duì)照研究[A];中華醫(yī)學(xué)會(huì)精神病學(xué)分會(huì)第九次全國學(xué)術(shù)會(huì)議論文集[C];2011年
相關(guān)碩士學(xué)位論文 前2條
1 石倩蓉;基于大眾外包方法的紡錘波檢測可行性分析[D];西安電子科技大學(xué);2015年
2 王雀良;慢性心理生理性失眠患者睡眠紡錘波特征的對(duì)照研究[D];暨南大學(xué);2011年
本文編號(hào):1440502
本文鏈接:http://sikaile.net/huliyixuelunwen/1440502.html