基于核酸鏈雜交反應(yīng)用于腫瘤標(biāo)記物EBNA-1的電化學(xué)免疫傳感器的研究
本文關(guān)鍵詞:基于核酸鏈雜交反應(yīng)用于腫瘤標(biāo)記物EBNA-1的電化學(xué)免疫傳感器的研究 出處:《重慶醫(yī)科大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: EB病毒核抗原-1 核酸雜交鏈反應(yīng) 石墨烯-多壁碳納米管納米復(fù)合物 阿霉素 電化學(xué)免疫傳感器
【摘要】:目的:EB病毒(Epstein-Barr virus, EBV)即人類皰疹病毒4型,目前全球感染該病毒的人口大于90%。EB病毒在兒童時(shí)期常常成隱性感染,到了成人當(dāng)免疫系統(tǒng)低下時(shí)便容易出現(xiàn)癥狀。EB病毒的檢測與多種疾病有關(guān)如:致死性傳染性單核細(xì)胞增多癥、Burkitt淋巴瘤、霍奇金病、鼻咽癌、胃癌、唾液腺腫瘤和近來發(fā)現(xiàn)的出現(xiàn)在免疫抑制患者身上的平滑肌腫瘤等相關(guān)。在上述疾病中,EB核抗原-1(EBNA-1)是最早期表達(dá)蛋白之一,且是持續(xù)表達(dá)的蛋白。EBNA-1不僅是EB病毒有關(guān)的腫瘤標(biāo)志物而且能夠區(qū)分其它病原微生物感染。因此,本研究構(gòu)建了一種準(zhǔn)確、高靈敏和快速檢測EBNA-1電化學(xué)免疫傳感器新方法。方法:1.石墨烯-多壁碳納米管-殼聚糖(GS-MWCNTs-Chit)納米復(fù)合物的制備。利用一步合成法將石墨烯、多壁碳納米管均勻分散到殼聚糖中。在納米復(fù)合物上電沉積金納米顆粒。使用電鏡和電化學(xué)方法對合成的納米復(fù)合物進(jìn)行表征。2.多壁碳納米管上連接DNA和多克隆抗(DNA-MWCNTs-Ab2)。DNA引發(fā)鏈和多克隆抗體通過原位合成法連接到多壁碳納米管上。發(fā)卡結(jié)構(gòu)的兩類核酸發(fā)生核酸鏈雜交反應(yīng)形成納米線結(jié)構(gòu)。通過原子力顯微鏡和電化學(xué)方法對其進(jìn)行表征。3.以玻碳電極作為反應(yīng)基板,5mM鐵氰化鉀溶液為基礎(chǔ)反應(yīng)液,在對基礎(chǔ)反應(yīng)液pH值、石墨烯與多壁碳納米管的比例、核酸鏈雜交反應(yīng)時(shí)間和抗原抗體孵育時(shí)間等實(shí)驗(yàn)條件優(yōu)化后,利用差分脈沖伏安法對不同濃度的EBV核抗原1進(jìn)行電化學(xué)檢測,并繪制標(biāo)準(zhǔn)曲線,對此EBV核抗原1(EBNA-1)電化學(xué)免疫傳感器的穩(wěn)定性、靈敏度和選擇性進(jìn)行評估。結(jié)果:1.成功合成GS-MWCNTs納米復(fù)合物。通過一步原位合成法合成GS-MWCNTs納米復(fù)合物,從掃描電子顯微鏡下可以看到GS-MWCNTs的形態(tài)學(xué)特征。通過原子力顯微鏡(AFM)可以觀察到MWCNTs和DNA-MWCNTs-Ab2的三維圖像,表明信號放大復(fù)合物制備成功。2.所制備的免疫傳感器,在最佳條件下,對目標(biāo)物EBNA-1進(jìn)行檢測,在0.05-6.4 ng mL-1范圍內(nèi)信號與目標(biāo)物濃度呈線性相關(guān)性,R2=0.99249,最低檢測限為0.7 pg mL-1 (S/N=3),線性方程為Y=24.81X-19.11。3.該傳感器性能良好:批間差異小于4.2%,批內(nèi)差異小于4.0%,選擇性好,最大干擾差異為4.3%。穩(wěn)定性好,儲(chǔ)存27天后,相應(yīng)電流僅下降了8.1%。結(jié)論:通過將石墨烯、多壁碳納米管、金納米顆粒層層修飾到玻碳電極表面,來增大電極的表面積、提高電子傳遞能力及增加單克隆抗體的負(fù)載量,制備的免疫傳感器可用于快速、超靈敏檢測EBNA-1。本研究結(jié)合了免疫反應(yīng)的特性與核酸雜交鏈反應(yīng)放大系統(tǒng),同時(shí)利用了納米材料包括石墨烯、多壁碳納米管、金納米顆粒促進(jìn)了電子傳遞,從而增加了免疫傳感器的靈敏性具有較寬的檢測范圍。此種電化學(xué)免疫傳感器具有特異性強(qiáng)、重復(fù)性好和靈敏度高等特點(diǎn),為臨床定量檢測EBNA-1提供了有效的方法。
[Abstract]:Objective to investigate Epstein-Barr virus (EBV) of human herpesvirus 4. Currently, the number of people worldwide infected with the virus is greater than 90. Epstein-Barr virus often becomes a recessive infection in childhood. Detection of Epstein-Barr virus is associated with many diseases such as fatal infectious mononucleosis Burkitt lymphoma Hodgkin's disease and nasopharyngeal carcinoma. Gastric cancer, salivary gland tumors and recently discovered smooth muscle tumors in immunosuppressive patients are associated with EBNA-1, one of the earliest expressed proteins. EBNA-1 is not only a tumor marker related to Epstein-Barr virus but also can distinguish other pathogenic microorganism infection. High sensitivity and rapid detection of EBNA-1 electrochemical immunosensor. Method: 1. Graphene multiwalled carbon nanotube-chitosan GS-MWCNTs-Chits-Chits-GS-MWCNTs-Chits-GS-MWCNTs-Chits-graphene. Preparation of nanocomposites. Graphene was prepared by one-step synthesis. Multiwalled carbon nanotubes were uniformly dispersed into chitosan. Gold nanoparticles were electrodeposited on nanocomposites. The synthesized nanocomposites were characterized by electron microscopy and electrochemical methods. DNA was attached to multi-walled carbon nanotubes. And polyclonal antibodies (. DNA-MWCNTs-Ab2). DNA initiation chains and polyclonal antibodies are connected to multiwalled carbon nanotubes by in situ synthesis. Two types of nucleic acids with hairpin structure undergo nucleic acid chain hybridization to form nanowires. Atomic force microscopy and electrochemical methods. The glassy carbon electrode was used as the reaction substrate. 5 mm potassium ferricyanide solution was used as the base reaction solution. The pH value of the base reaction solution, the ratio of graphene to multi-walled carbon nanotubes, the reaction time of nucleic acid chain hybridization and the incubation time of antigen and antibody were optimized. Differential pulse voltammetry was used to detect EBV nuclear antigen 1 at different concentrations, and the standard curve was drawn. The stability of the electrochemical immunosensor for this EBV nuclear antigen 1a EBNA-1 was studied. The sensitivity and selectivity were evaluated. Results: 1. GS-MWCNTs nanocomposites were synthesized successfully. GS-MWCNTs nanocomposites were synthesized by one step in situ synthesis. The morphological features of GS-MWCNTs can be seen from the scanning electron microscope. 3D images of MWCNTs and DNA-MWCNTs-Ab2 can be observed. The results showed that the signal amplification complex was successfully prepared. 2. The immunosensor was prepared and the target EBNA-1 was detected under the optimum conditions. In the range of 0.05-6.4 ng mL-1, there was a linear correlation between the signal and the concentration of the target. The lowest detection limit was 0.7 PG mL-1 / S / N ~ (3 +) and the linear equation was (24.81X-19.11.3). The sensor had good performance: the difference between batches was less than 4.2%. The intra-batch difference was less than 4.0, the selectivity was good, the maximum interference difference was 4.3.The stability was good. After 27 days of storage, the corresponding current decreased only 8.1. Conclusion: graphene, multi-walled carbon nanotubes were added. Gold nanoparticles were modified on the surface of glassy carbon electrode to increase the surface area of the electrode, improve the electron transfer ability and increase the load of monoclonal antibody. The immunosensor prepared can be used for rapid development. Hypersensitive detection of EBNA-1. This study combined the characteristics of immune reaction with nucleic acid hybridization chain reaction amplification system, and used nano-materials, including graphene, multi-walled carbon nanotubes. Gold nanoparticles promote electron transfer, thus increasing the sensitivity of the immunosensor with a wide range of detection. This electrochemical immunosensor has the characteristics of strong specificity, good reproducibility and high sensitivity. It provides an effective method for clinical quantitative detection of EBNA-1.
【學(xué)位授予單位】:重慶醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:R446.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周文莉;任恕;;免疫傳感器的進(jìn)展[J];國外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊;1989年05期
2 卜海之;;免疫傳感器[J];國外醫(yī)學(xué).藥學(xué)分冊;1989年04期
3 繆璐;劉仲明;張水華;;電化學(xué)免疫傳感器的研究進(jìn)展[J];中國醫(yī)學(xué)物理學(xué)雜志;2006年02期
4 張波;府偉靈;毛瓊國;姚春燕;陳鳴;徐世軍;俞凡;;基于壓電諧振檢測技術(shù)的癌胚抗原免疫傳感器的實(shí)驗(yàn)研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2006年04期
5 歐海龍;夏成;張洪友;;納米材料在免疫傳感器中的應(yīng)用[J];中國奶牛;2007年12期
6 溫志立;免疫傳感器的發(fā)展概述[J];生物醫(yī)學(xué)工程學(xué)雜志;2001年04期
7 溫志立,汪世平,沈國勵(lì),曾憲芳;免疫傳感器的發(fā)展與制作[J];免疫學(xué)雜志;2001年02期
8 霍群;電化學(xué)免疫傳感器[J];臨床檢驗(yàn)雜志;2003年03期
9 袁若,唐點(diǎn)平,柴雅琴,張凌燕,劉顏,鐘霞,戴建遠(yuǎn);高靈敏電位型免疫傳感器對乙型肝炎表面抗原的診斷技術(shù)研究[J];中國科學(xué)(B輯 化學(xué));2004年04期
10 丁克祥,吳朝陽,鄭永晨,王攀,周穎,曹國彬,胡燕祝,呂沅津;hTK1質(zhì)量放大壓電石英晶體免疫傳感器研究[J];中國老年學(xué)雜志;2005年09期
相關(guān)會(huì)議論文 前10條
1 章竹君;;集群標(biāo)記物納米粒子細(xì)胞免疫傳感器[A];中國化學(xué)會(huì)第十屆全國發(fā)光分析學(xué)術(shù)研討會(huì)論文集[C];2011年
2 趙華文;李原芳;黃承志;;基于表面共振光散射信號增強(qiáng)的免疫傳感器[A];第八屆全國發(fā)光分析暨動(dòng)力學(xué)分析學(xué)術(shù)研討會(huì)論文集[C];2005年
3 馬超;趙廣英;;免疫傳感器在食品安全快速檢測中的研究進(jìn)展[A];中國食品科學(xué)技術(shù)學(xué)會(huì)第五屆年會(huì)暨第四屆東西方食品業(yè)高層論壇論文摘要集[C];2007年
4 朱將偉;劉國艷;史賢明;;己烯雌酚的過氧化氫酶標(biāo)記及己烯雌酚免疫傳感器[A];中國食品科學(xué)技術(shù)學(xué)會(huì)第五屆年會(huì)暨第四屆東西方食品業(yè)高層論壇論文摘要集[C];2007年
5 朱俊杰;;納米材料構(gòu)建電化學(xué)免疫傳感器[A];中國化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)分析化學(xué)分會(huì)場論文集[C];2008年
6 趙潔;秦坯芽;胡效亞;楊占軍;;基于還原石墨烯的牛白介素-4無標(biāo)記電化學(xué)阻抗免疫傳感器[A];第八屆全國化學(xué)生物學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2013年
7 劉璇;雷建平;鞠q,
本文編號:1430587
本文鏈接:http://sikaile.net/huliyixuelunwen/1430587.html