傳遞函數(shù)模型在股市分析中的應(yīng)用
[Abstract]:With the development and perfection of Chinese stock market, time series analysis is more and more widely used in stock market research. Transfer function model is widely used in economy, industry and engineering, but it is still rare in stock market. In this paper, the transfer function model is applied to the stock market analysis, which mainly uses the cross-correlation function test of the price quantity to analyze the relationship between the price and quantity of the composite index in the bull market, the bear market and the equilibrium market. And compared with Hang Seng Index, Dow Jones Industrial average Index and Shanghai stock market Sinopec. It is concluded that there are commonness and differences in the results of the Shanghai Composite Index under different trends, and there are commonness and differences in the results of the domestic and foreign indexes, indices and individual stocks in the same trend, and there is a contemporaneous relationship between the price quantity and the mutual feedback relationship between the price and the quantity. And price leads to quantity or quantity to price. The advantage of the transfer function model is that the transfer function part of the model expresses the relation of the price and the noise part reflects the sequential relation of the output sequence itself. For the output time series, if the influence of the input sequence and the input sequence is more significant, the established transfer function model will be better than the ARIMA model. On the other hand, if the influence is not significant, or the total number of periods is less, it is better to establish ARIMA model. Based on the empirical study of multivariate transfer function model, this paper firstly uses the stepwise regression method in multivariate statistics and the cross-correlation function between output sequence and input sequence to eliminate the input sequence which does not satisfy the conditions, and then establishes the model. When there is a high correlation between multiple input sequences, this paper attempts two weighted methods to construct new input sequences, in which a new input sequence is constructed based on the ratio of the cross-correlation function of the output sequence and the input sequence. The model established with the output sequence is optimal. According to the emergence of intervention events, this paper puts forward three modified transfer function models on the basis of the third chapter theory, and makes an empirical analysis of the transfer function model with the intervention of input variables, taking the intervention of stock index futures listing on the stock market as an example. The empirical results show that the proposed modified model is superior to the original transfer function model when the input sequence is interfered.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:F224;F832.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡杉杉,黨佳瑞,藍(lán)柏雄;中國證券市場的可預(yù)測性研究[J];財(cái)經(jīng)科學(xué);2001年03期
2 黃永興;政策調(diào)整對(duì)上海股票市場影響的實(shí)證分析[J];安徽工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
3 劉曉華;;突發(fā)事件對(duì)中國股市的影響——以“9.11”事件為例[J];經(jīng)濟(jì)論壇;2007年12期
4 于偉;尹敬東;;我國股票市場量價(jià)關(guān)系的實(shí)證研究——基于牛市、熊市和盤整市不同情況下的比較分析[J];南京財(cái)經(jīng)大學(xué)學(xué)報(bào);2006年01期
5 佟孟華;吳成明;;基于CARR模型的上海股市量價(jià)關(guān)系實(shí)證研究[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2009年01期
6 萬建強(qiáng),文洲;ARIMA模型與ARCH模型在香港股指預(yù)測方面的應(yīng)用比較[J];數(shù)理統(tǒng)計(jì)與管理;2001年06期
7 夏天;;基于CARR模型的交易量與股價(jià)波動(dòng)性動(dòng)態(tài)關(guān)系的研究[J];數(shù)理統(tǒng)計(jì)與管理;2007年05期
8 李亞靜,朱宏泉,彭育威;基于GARCH模型族的中國股市波動(dòng)性預(yù)測[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2003年11期
9 向陽;袁星;謝正輝;劉志雨;;傳遞函數(shù)-自回歸模型在地下水埋深估計(jì)中的應(yīng)用[J];水文;2006年04期
10 路群;中國央行降息對(duì)股市影響的一類干預(yù)分析模型[J];預(yù)測;2001年04期
相關(guān)碩士學(xué)位論文 前2條
1 劉文抒;基于灰色模型和ARIMA模型的上證指數(shù)研究[D];河海大學(xué);2005年
2 陳晶鑫;基于灰色模型和ARCH模型對(duì)股價(jià)指數(shù)的實(shí)證分析[D];東北財(cái)經(jīng)大學(xué);2007年
本文編號(hào):2206752
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/2206752.html